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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 PARTIAL DIFFERENTIAL 

EQUATIONS 
 

Introdcution to Block 

Partial Differential Equations play an important role in modern 

mathematics. 

This book provides an introduction to the basic properties of Partial 

Differential Equations and to the techniques that have proved useful in 

analyzing them. 

Introduced some advanced concepts. These concepts are useful for 

research in modern science. Provided most important proofs and solved 

examples. 

In this block we will learn and understand about first and second order 

partial differential equations, Waves and diffusions, Boundary problems, 

Harmonic functions and Green‘s identities and Green‘s functions. 
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UNIT-1 PRELIMINARIES 
 

STRUTURE 

1.0 Objective 

1.1 Introduction 

1.2 Partial Differential equations 

1.3 Equations of first order 

1.4 Linear equations 

1.5 Quasilinear equations 

1.6 Initial value problems of Caushy 

1.7 Non linear equations in two variables 

1.8 Let us sum up 

1.9 Key words 

1.10 Questions for review 

1.11 Suggested readings and reference 

1.12 Answers to check your progress 

1.0 OBJECTIVE  

 

After studying this unit, you should be able to: 

Understand about Partial differential equations, Equations of first 

order, Quasilinear equations, Initial value problems of Cauchy, Non 

linear equations in two variables. 

1.1 INTRODUCTION 

 

After thinking about the meaning of a partial differential equation, we 

will flex our mathematical muscles by solving a few of them. Then we 

will see how naturally they arise in the physical sciences. The physics 

will motivate the formulation of boundary conditions and initial 
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conditions. 

1.2 PARTIAL DIFFERENTIAL 

EQUATION 

 

The key defining property of a partial differential equation (PDE) is that 

there is more than one independent variable x, y……. 

There is a dependent variable that is an unknown function of these 

variables 

 u(x, y, . . .  ). We will often denote its derivatives by subscripts; thus 

∂u/∂x ux , and so on. A PDE is an identity that relates the independent 

variables, the dependent variable u, and the partial derivatives of u. It 

can be written as 

    F (x, y, u(x, y), ux (x, y), uy(x, y)) = F (x, y, u, ux , uy) = 0.          (1)  

This is the most general PDE in two independent variables of first 

order. The order of an equation is the highest derivative that appears. 

The most general second-order PDE in two independent variables is 

                F (x, y, u, ux , uy, uxx , uxy, uyy) = 0. .............. (2)  

 A solution  of a PDE is a function u(x, y,.................... ) that satisfies 

the equation 

identically, at least in some region of the x, y, variables. 

When solving an ordinary differential equation (ODE), one sometimes 

reverses the roles of the independent and the dependent variables—for 

in- stance, for the separable  

ODE 
3du

u
dx

  

For PDEs, the distinction between the independent variables and the 

dependent variable (the unknown) is always maintained. 

Some examples of PDEs (all of which occur in physical theory) are: 

1. ux + uy = 0 (transport) 

2. ux + yuy = 0 (transport) 

3. ux + uuy = 0 (shock wave) 

4. uxx + uyy = 0 (Laplace‘s equation) 

5. utt − uxx + u3 = 0     (wave with interaction) 
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6. ut + uux + uxxx = 0   (dispersive wave) 

         7. tt xxxxu + u = 0  (vibrating bar) 

8.  t xxu -iu 0 1i    (quantum mechanics) 

Each of these has two independent variables, written either as x and y 

or as x and t. Examples 1 to 3 have order one; 4, 5, and 8 have order 

two; 6 has order three; and 7 has order four. Examples 3, 5, and 6 are 

distinguished from the others in that they are not ―linear.‖ We shall 

now explain this concept. 

Linearity means the following. Write the equation in the form 0u  , 

where  is an operator. That is, if v is any function, v is a new 

function. For instance, =∂/∂x is the operator that takes v into its 

partial derivative vx . In Example 2, the operator  is = ∂/∂x + 

y∂/∂y. (u=   ux+ yuy .) The definition we want for linearity is 

 (u + v) = u + v  (cu) = cu (3) 

for any functions u, v and any constant c. Whenever (3) holds (for all 

choices of u, v, and c),  is called linear operator. The equation 

u = 0                                                              

(4) 

is called linear if l is a linear operator. Equation (4) is called a 

homogeneous linear equation. The equation 

 u = g                                                                                                 (5) 

where 0g  is a given function of the independent variables, is 

called an 

inhomogeneous linear equation. For instance, the equation 

(cos xy
2
)ux − y

2
uy = tan(x 

2
 + y

2
 )          (6) 

 is an inhomogeneous linear equation. 

As you can easily verify,  five of the eight equations above are linear   

as well as homogeneous. Example 5, on the other hand, is not linear 

because although 

 (u +  v)xx  = uxx +   vxx and (u + v)tt  =  utt + vtt satisfy property (3), 

the cubic term does not: 

(u + v)
3
 = u

3
 + 3u

2
v + 3uv

2
 + v

3
   u

3
 + v

3
. 
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The advantage of linearity for the equation 0u   is that if u and v are 

both solutions, so is (u v). If u1,..., un are all solutions, so is any 

linear combination 

c1u1(x ) + · · ·  + cnun(x ) = c j uj (x ) (cj = constants). 

(This is sometimes called the superposition principle.) Another 

consequence of linearity is that if you add a homogeneous solution [a 

solution of (4)] to an inhomogeneous solution [a solution of (5)], you 

get an inhomogeneous solution. (Why?) 

 The mathematical structure that deals with linear combinations and 

linear operators is the vector space.  

We‘ll study, almost exclusively, linear systems with constant 

coefficients. Recall that for ODEs you get linear combinations. The 

coefficients are the arbitrary constants. For an ODE of order m, you get 

m arbitrary constants. 

Let‘s look at some PDEs. 

Example 1: 

Find all u(x, y) satisfying the equation uxx= 0. Well, we can integrate 

once to get  

ux =constant. But that‘s not really right since there‘s another variable 

y.  

What we really get is ux(x, y)= f (y), where f (y) is arbitrary.  

Do it again to get u(x, y)= f (y)x+ g(y).  

This is the solution formula. Note that there are two arbitrary functions 

in the solution. 

Example 2: 

Solve the PDE uxx +u= 0. Again, it‘s really an ODE with an extra 

variable y. We know how to solve the ODE, so the solution is 

u = f (y) cos x + g(y) sin x, 

where again f (y) and g(y) are two arbitrary functions of y.  

You can easily check this formula by differentiating twice to verify that 

uxx = −u.  

Example 3: 

Solve the PDE uxy=0. This isn‘t too hard either. First let‘s integrate in 

x, regarding y as fixed. So we get uy(x, y) = f (y). 
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Next let‘s integrate in y regarding x as fixed. We get the solution. 

u(x, y) = F (y) + G(x ), 

where F 1 =  f.  

Note: A PDE has arbitrary functions in its solution. In these examples 

the arbitrary functions are functions of one variable that combine to 

produce a function u(x, y) of two variables which is only partly 

arbitrary. 

A function of two variables contains immensely more information 

than a function of only one variable. Geometrically, it is obvious that 

a surface u= f (x, y) , the graph of a function of two variables, is a 

much more complicated object than a curve  u=f (x ) , the graph of a 

function of one variable. 

To illustrate this, we can ask how a computer would record a function  

u f (x). Suppose that we choose 100 points to describe it using equally 

spaced values of x : x1, x2,  

x 3 , . . . ,  x100.  

We could write them down in a column, and next to each xj we could 

write the  

corresponding value uj= f (xj ).  

Now how about a function u f (x, y)? Suppose that we choose 100 

equally spaced values of x and also of y: x1, x2, x3 , . . . ,  x100 and y1, y2, 

y3 , . . . ,  y100.  

Each pair xi , y j provides a value uij= f (xi , y j ), so there will be 1002 

= 10,000 lines of the form   xi     y j uij 

required to describe the function! (If we had a prearranged system, we 

would need to record only the values uij.) A function of three variables 

described discretely by 100 values in each variable would require a 

million numbers! 

To understand this book what do you have to know from calculus? 

Certainly all the basic facts about partial derivatives and multiple 

integrals. For a brief discussion of such topics, see the Appendix. Here 

are a few things to keep in mind, some of which may be new to you. 

1. Derivatives are local. For instance, to calculate the derivative (∂u/∂x 

)(x0, t0) at a particular point, you need to know just the values  of u(x, 
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t0) for x near x0, since the derivative is the limit as x → x0. 

2. Mixed derivatives are equal: uxy uyx . (We assume throughout this book, 

unless stated otherwise, that all derivatives exist and are continuous.) 

3. The chain rule is used frequently in PDEs; for instance, 

     
1[ f (g(x, t ))]=f (g(x, t )) (x, t ).

x x

g 

 
 

4. Derivatives of integrals like 

b(t )

( )

I (t ) = f (x, t ) dx
a t

   

Exercise: 

1. Verify the linearity and nonlinearity of the eight examples of PDEs given 

in the text, by checking whether or not equations (3) are valid. 

2.  Which of the following operators are linear? 

(a)  u = ux + xu y 

(b)  u = ux + uuy 

(c)   u = ux + u2 

(d)  u = ux + uy + 1 

3. Are the functions 1+x, 1-x and  1+x+x2 linearly dependent or 

independent? Why? 

1.3 EQUATIONS OF FIRST 

ORDER 

For a given sufficiently regular function F the general equation of first 

order for the unknown function u(x) is  F (x, u, ∇u) = 0 

in Ω ∈ R
n
. The main tool for studying related problems is the theory of 

ordinary differential equations. This is quite different for systems of 

partial differential of first order. 

The general linear partial differential equation of first order can be 

written as 

n

i=1

 ai(x)uxi  + c(x)u = f (x) for given functions ai, c and f .  

The general quasilinear partial differential equation of first order is 

n

i=1

 ai(x,u)uxi  + c(x,u) = 0
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Check your progress 

1. Discuss about equation of first order 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------- 

1.4 LINEAR EQUATIONS 

 

Let us begin with the linear homogeneous equation 

a1(x, y)ux + a2(x, y)uy = 0. (1)  

Assume there is a C
1
-solution z = u(x, y). This function defines a 

surface 

S which has at P = (x, y, u(x, y)) the normal 

2

1
( , ,1)

1
x yN u u

u
  

 
 and the tangential plane defined by 

ζ − z = ux(x, y)(ξ − x) + uy(x, y)(η − y). 

Set p = ux(x, y), q = uy(x, y) and z = u(x, y).  

 The tuple (x, y, z, p, q)  is called surface element and the tuple (x, y, z) 

support of the surface element. The tangential plane is defined by the 

surface element. 

 On the other hand, differential equation (1) 

a1(x, y)p + a2(x, y)q = 0 

defines at each support (x, y, z) a bundle of planes if we consider all (p, q) 

satisfying this equation.  

For fixed (x, y), this family of planes Π (λ) = Π(λ; x, y) is defined by a 

one parameter family of ascents p(λ) = p(λ; x, y), q(λ)  =  q(λ; x, y).  

The envelope of these planes is a line since 

a1(x, y)p(λ) + a2(x, y)q(λ) = 0, 

which implies that the normal N(λ) on Π(λ) is perpendicular on (a1, a2, 

0). 

Consider a curve x(τ ) = (x(τ ), y(τ ), z(τ )) on S,  

Let Tx0 be the tangential plane at x0 = (x(τ0), y(τ0), z(τ0)) of S and 

consider on  

Tx= the line 
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L : l(σ) = x0 + σx
J
(τ0),   σ ∈ R, 

By figure  (1), 

We assume L coincides with the envelope, which is a line here, of the 

family of planes Π(λ) at (x, y, z).  Assume that Tx0 = Π(λ0) and 

consider  two planes 

Π(λ0) : z − z0 = (x − x0)p(λ0) + (y − y0)q(λ0) 

Π(λ0 + h) :z − z0    = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h). 

At the intersection l(σ) we have 

(x − x0)p(λ0) + (y − y0)q(λ0) = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h). 

Thus, 

x
J
(τ0)p

J
(λ0) + y

J
(τ0)q

J
(λ0) = 0. 

From the differential equation 

a1(x(τ0), y(τ0))p(λ) + a2(x(τ0), y(τ0))q(λ) = 0 

 

z 

 

 

 

 

 

 

 

                                                    Figure (1) 

 

Figure 1: Curve on a surface 

it follows 1 1

1 0 2 0a p ( ) + a q ( ) = 0   

.Consequently, 

1
1 1

1

x (  )
(x (  ), y (  )) = (a  (x(  ), y(  )), a  (x(  ), y(  )),

a (x( , y(  ))


     

 
 

since  τ0 was  an  arbitrary  parameter.   Here  we  assume  that  x
J
(τ )  ƒ=  0  

and 

a1(x(τ ), y(τ )) ƒ   0. 

Then we introduce a new parameter t by the inverse of τ = τ (t), where 

 

  

)  
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1

1

( )

( ( ), ( ))

x s
ds

a x s y s





  

It follows x
J
(t) = a1(x, y),  y

J
(t) = a2(x, y).  We denote x(τ (t)) by x(t) 

again. 

Now we consider the initial value problem 

x
J
(t) = a1(x, y),   y

J
(t) = a2(x, y),   x(0) = x0,  y(0) = y0. (2) 

From the theory of ordinary differential equations it follows (Theorem 

of Picard-Lindelöf) that there is a unique solution in a neighborhood of t 

= 0 provided the functions a1, a2 are in C
1
. 

From this definition of the curves 

(x(t), y(t)) is follows that the field of directions (a1(x0, y0), a2(x0, y0)) 

defines the slope of these curves at (x(0), y(0)). 

Definition: The differential equations in (2) are called characteristic 

equations or characteristic system and solutions of the associated initial 

value problem are called characteristic curves. 

Definition: A function υ(x, y) is said to be an integral of the 

characteristic system if υ(x(t), y(t)) = const. for each characteristic 

curve. The constant depends on the characteristic curve considered. 

Proposition 1: Assume υ ∈ C
1
 is an integral, then u = υ(x, y) is a 

solution of (2.1). 

Proof. Consider for given (x0, y0) the above initial value problem (2). 

Since υ(x(t), y(t)) = const. it follows 

υxx
J
 + υyy

J
 = 0 for |t| < t0, t0 > 0 and sufficiently small.   

Thus 

υx(x0, y0)a1(x0, y0) + υy(x0, y0)a2(x0, y0) = 0. 

Remark. If υ(x, y) is a solution of equation (1) then also  H(υ(x, y)), 

where H(s) is a given C
1
-function. 

Examples: 

1. Consider 

a1ux + a2uy = 0, 

where a1, a2 are constants. The system of characteristic equations is 

x
J
 = a1,  y

J
 = a2. 

Thus the characteristic curves are parallel straight lines defined by 

x = a1t + A, y = a2t + B, 



Notes  

15 

where A, B are arbitrary constants. From these equations it follows that 

υ(x, y) := a2x − a1y 

is constant along each characteristic curve. Consequently, see 

Proposition (1),  

 u  =  a2x − a1y is a solution of the differential equation.   From   an 

exercise it follows that 

u = H (a2x − a1y), (3) 

Where H(s) is an arbitrary C
1
-function, is also a solution. Since u is 

constant when a2x − a1y is constant, equation (3) defines cylinder 

surfaces which are generated by parallel straight lines which are parallel 

to the (x, y)-plane, see Figure 1.2. 

 

 

z 

 

 

 

 

 

 

Figure 1.2: Cylinder surfaces 

2. Consider the differential equation 

xux + yuy = 0. 

The characteristic equations are 

x
J
 = x,  y

J
 = y, nand the characteristic curves are given by 

x = Ae
t
,  y = Be

t
, 

where A,  B are arbitrary constants.   

Thus, an integral is y/x, x = 0, and for a given C
1
-function the function 

u = H(x/y) is a solution of the differential equation.   
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 If  y/x  =  const.,  then  u  is  constant.   Suppose  that  H
1
(s)  >  0, for 

example, then u defines right helicoids (in German:  Wendelflächen), see 

Figure 1.3 

Figure 1.3: Right helicoid, a
2
 < x

2
 + y

2
 < R

2
 (Museo Ideale Leonardo 

da Vinci, Italy) 

3. Consider the differential equation 

yux − xuy = 0. 

The associated characteristic system is 

x
1
 = y,  y

1
 = −x.If  follows 

x
1
x + yy

1
 = 0,  or    equivalently, 

2 2 (x  + y ) = 0
d

dt
 

which  implies  that  x
2
 + y

2
 = const. along  each  characteristic.  Thus,  

rotationally  symmetric  surfaces  defined  by  u = H(x
2
 + y

2
),  where  H

J
 

ƒ= 0,  are solutions of the differential equation. 

4. The associated characteristic equations to 

ayux + bxuy = 0, where a, b are positive constants, are given by 

x
1
 = ay,  y

1
 = bx. 

It follows bxx
1
 – ayy

1
 = 0, or equivalently, 

2 2 (bx  -ay ) = 0
d

dt
 

Solutions  of  the  differential  equation  are  u  =  H(bx
2
 − ay

2
),  which  

define surfaces which have  a hyperbola as the intersection with planes 

parallel to the (x, y)-plane.  

 Here H(s) is an arbitrary C
1
-function, H

1
(s) ƒ= 0. 
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1.5 QUASILINEAR EQUATIONS 

Here we consider the equation 

a1(x, y, u)ux + a2(x, y, u)uy = a3(x, y, u). (4) 

The inhomogeneous linear equation 

a1(x, y)ux + a2(x, y)uy  =  a3(x, y) is a special case of (4). 

One  arrives  at  characteristic  equations  x
1
 =  a1,   y

1
  =  a2,   z

1
  =  a3 

from  (4)  by  the  same  arguments  as  in  the  case  of  homogeneous  

linear equations in two variables.  The additional equation z
1
 = a3 

follows from 

Z
1
(τ )    =    p(λ)1

1
(τ ) + q(λ)y

1
(τ ) 

= pa1 + qa2= a3, 

A linearization method 

We can transform the inhomogeneous equation (4) into a homogeneous 

linear equation for an unknown function of three variables by the 

following trick. 

We are looking for a function ψ(x, y, u) such that the solution u = u(x, 

y) of (4) is defined implicitly by ψ(x, y, u) = const.  

Assume there is such a function ψ and let u be a solution of (4), 

then 

ψx + ψuux = 0, ψy + ψuuy = 0. 

Assume ψu   0, then 

,
x y

ux uy
u u

 

 
     

From (4)  

a1(x, y, z) ψx + a2(x, y, z)ψy + a3(x, y, z)ψz = 0,             (5) 

where z := u. 

We consider the associated system of characteristic equations 

1

1

1

2

1

3

( ) ( , , )

( ) ( , , )

( ) ( , , )

x t a x y z

y t a x y z

z t a x y z







 

 One arrives at this system by the same arguments as in the two-

dimensional case above. 

Proposition 2: 
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 (i) Assume w  ∈ C
1
, w  =  w(x, y, z), is an integral,  i.  e., it is constant 

along each fixed solution of (5), then ψ = w(x, y, z) is a solution of (5). 

(ii) The function z = u(x, y), implicitly defined through 

ψ(x, u, z) = const., is a solution of (4), provided that ψz ƒ= 0. 

(iii) Let z = u(x, y) be a solution of (4) and let (x(t), y(t)) be a solution of 

x
1
(t) = a1(x, y, u(x, y)),    y

J
(t) = a2(x, y, u(x, y)), 

then z(t) := u(x(t), y(t)) satisfies the third of the above characteristic 

equations. 

Check your progress 

2. Discuss about quasilinear equations 

---------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------ 

1.6 INITIAL VALUE PROBLEM 

OF CAUCHY 

Consider again the quasilinear equation 

(*)a1(x, y, u)ux + a2(x, y, u)uy = a3(x, y, u). 

Let  Γ :x = x0(s), y = y0(s), z = z0(s), s1 ≤ s ≤ s2, −∞ < s1 < s2 < 

+∞ 

be a regular curve in R
3
 and denote by C the orthogonal projection of Γ 

onto the  

(x, y)-plane, i. e., 

C : x = x0(s),   y = y0(s). 

Initial value  problem  of  Cauchy: Find  a  C
1
-solution  u  =  u(x, 

y)  of (×) such that u(x0(s), y0(s)) = z0(s), i. e., we seek a surface S 

defined by z = u(x, y) which contains the curve Γ. 

z 
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Figure 1.4: Cauchy initial value problem 

Definition:  The curve Γ is said to be non characteristic if 

1 1 1
0 02 0 0 0 0x (s)a (x (s), y (s)) - y (s)a (x (s), y (s)) 0 . 

Theorem: Assume a1, a2, a2 ∈ C
1
 in their arguments, the initial data 

x0, y0, z0 ∈ C
1
[s1, s2] and Γ is non characteristic. 

Then there is a neighborhood of C such that there exists exactly one 

solution u of the Cauchy initial value problem. 

Proof. (i) Existence. Consider the following initial value problem for 

the system of characteristic equations to (*): 

1

1

2

1

3

0

0

0

a (x, y, z)

y (t)=a (x, y, z)

z (t)=a (x, y, z)

with the initial conditions

x(s,0)=x (s)

y(s,0)=y (s)

z(s,0)=z (s)

 

Let x = x(s, t), y = y(s, t), z  = z(s, t)  be  the  solution,  s1 ≤ s ≤ s2,  |t| < 

η for an η > 0. We will show  that this set of strings stickled onto  the 

curve  Γ, see Figure 1.4, defines a surface. To show this, we consider 

the inverse functions s = s(x, y), t = t(x, y) of x = x(s, t), y  =  y(s, t)  

and  show  that  z(s(x, y), t(x, y)) is a solution of the initial problem of 

Cauchy.  

The inverse functions s and t exist in a neighborhood of t = 0 since 

1 1
0 02 1

0

(x,y)
det ( ) ( ) 0

(s,t) t=0

s t

s t t

x x
x s a y s a

y y



   


 

and the initial curve Γ is non characteristic by assumption. 

Set  u(x, y) := z(s(x, y), t(x, y)), 

then u satisfies the initial condition since u(x, y)|t=0 = z(s, 0) = z0(s). 

The following calculation shows that u is also a solution of the 

differential equation (×). 

a1ux + a2uy = a1(zssx + zttx) + a2(zssy + ztty) 

                   = zs(a1sx + a2sy) + zt(a1tx + a2ty) 

                   = zs(sxxt + syyt) + zt(txxt + tyyt) 

                        = a3 
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since 0 = st = sxxt + syyt and 1 = tt = txxt + tyyt. 

(ii) Uniqueness. Suppose that v(x, y) is a second solution. Consider 

a point (x
J
, y

J
) in  a  neighborhood  of  the  curve  (x0(s), y(s)),  

1 2s -s s s + s,s > 0   small.  

(iii) The inverse parameters are s
J
 = s(x

J
, y

J
),  t

J
 =  t(x

J
, y

J
),  see 

Figure 1.5. 

 

 

 

 

 

 

 

 

 

Figure 1.5: Uniqueness proof Let 

A :x(t) := x(s1, t),  y(t) := y(s1, t),  z(t) := z(s1, t) 

be the solution of the above initial value problem for the characteristic 

differential equations with the initial data 

x(s
1
, 0) = x0(s

1
),  y(s

1
, 0) = y0(s

1
),  z(s

1
, 0) = z0(s

1
). 

According to its construction this curve is on the defined by  

u =u(x, y) and u(x
1
, y

1
) = z(s

1
, t

1
).  Set  

ψ(t) := v(x(t), y(t)) − z(t), 

Then       
1 1 J 1(t)    =    vxx  + vyy  = z

 

= xxa1 + vya2 − a3 = 0 

ψ(0) = v(x(sj, 0), y(sj, 0)) − z(sj, 0) = 0 

since v is a solution of the differential equation and satisfies the initial 

con- dition by assumption. Thus, ψ(t) ≡ 0, i. e., 

v(x(s
J
, t), y(s

J
, t)) − z(s

J
, t) = 0. 

Set t = t
J
, then 

v(xj, yj) − z(sj, tj) = 0,which shows that v(x
J
, y

J
) = u(x

J
, y

J
) because of 

z(s
J
, t

J
) = u(x

J
, y

J
).  
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Remark. In general, there is no uniqueness if the initial curve Γ is a 

characteristic curve, see an exercise and Figure 1.6 which illustrates 

this case. 

 

 

 

 

 

 

Figure 1.6: Multiple solutions 

Examples: 

1. Consider the Cauchy initial value problem 

ux + uy = 0 with the initial data 

x0(s) = s, y0(s) = 1, z0(s) is a given C
1
-function. 

These initial data are non characteristic since y0
J a1 −x

J

0a2 = −1.  The 

solution of the associated system of characteristic equations 

x
J
(t) = 1,  y

J
(t) = 1,  u

J
(t) = 0 

with the initial conditions 

x(s, 0) = x0(s), y(s, 0) = y0(s), z(s, 0) = z0(s) is given by 

x = t + x0(s), y = t + y0(s), z = z0(s), x = t + s, y = t + 1, z = z0(s). 

It follows s = x − y + 1, t = y − 1 and that u = z0(x − y + 1) is the 

solution of the Cauchy initial value problem. 

A problem from kinetics in chemistry. Consider for x ≥ 0, y ≥ 0 the 

problem with initial data. 

u(x, 0) = 0, x > 0, and u(0, y) = u0(y), y > 0. 

Here the constants kj are positive, these constants define the velocity of 

the reactions in consideration, and the function u0(y) is given. The 

variable x is the time and y is the height of a tube, for example, in 

which the chemical reaction takes place, and u is the concentration of 

the chemical substance. 

In contrast to our previous assumptions, the initial data are not in 

C
1
. The projection C1 ∪ C2 of the initial curve onto the (x, y)-plane has a 

corner at the origin, see Figure 1.7. 
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The associated system of characteristic equations is 

x
J
(t) = 1,  y

J
(t) = 1,  z

J
(t) = 

.
k0e

−k1x + k2

Σ 
(1 − z). 

It follows x =  t + c1,  y  =  t + c2 with  constants  cj.   

Thus  the  projection of the characteristic curves on the (x, y)-plane are 

straight lines parallel to y = x. We will solve the initial value problems 

in the domains Ω1 and Ω2, see Figure 2.7, separately. 

(i) The initial value problem in Ω1. The initial data are 

x0(s) = s, y0(s) = 0, z0(0) = 0, s ≥ 0. 

It follows x = x(s, t) = t + s, y = y(s, t) = t. 

z
J
(t) = (k0e

−k1(t+s) + k2)(1 − z),  z(0) = 0 

The solution of this initial value problem is given by 

1

11

-k (s+t)0 0
2 1

1 1

k (x-y)-k x -0
2 0 1

1

k k
z(s, t) = 1 - exp  e  - k t -  e-k s .

k k

Consequently

k
u (x, y) = 1 - exp   e  - k y - k k  e

k

 
 
 

 
 
 

 

is the solution of the Cauchy initial value problem in Ω1. If time x 

tends to 

∞, we get the limit.

2-k y

1lim u (x,y)=1-e

x  
 

(ii) The initial value problem in Ω2. The initial data are here 

x0(s) = 0, y0(s) = s, z0(0) = u0(s), s ≥ 0. 

It follows  

x = x(s, t) = t, y = y(s, t) = t + s. 

z
1
(t) = (k0e

−k1t + k2)(1 − z),  z(0) = 0. 

The solution of this initial value problem is given by 

 

x=y 


2
 

1 
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1-k t0 0
0 2

1 1

k k
z(s, t) = 1 - (1-u (s)exp  e  - k t - 

k k

 
 
 

 

Consequently, 

1-k x0 0
2 0 2

1 1

k k
u (x, y) = 1 - (1-u (y-x)exp  e  - k x - 

k k

 
 
 

 

Is the solution in 2  

If x=y then 

1-k x0 0
1 2

1 1

k k
u (x, y) = 1 - exp  e  - k x - 

k k

 
 
 

 

1-k x0 0
2 0 2

1 1

k k
u (x, y) = 1 - (1-u (0)exp  e  - k x - 

k k

 
 
 

 

If u0(0) > 0, then u1 < u2 if x = y, i. e., there is a jump of the 

concentration of the substrate along its burning front defined by x = y. 

Remark. Such a problem with discontinuous initial data is called 

Riemann problem. See an exercise for another Riemann problem. 

The case that a solution of the equation is known 

Here we will see that we get immediately a solution of the Cauchy 

initial value problem if a solution of the homogeneous linear equation 

a1(x, y)ux + a2(x, y)uy = 0 is known. 

Let x0(s), y0(s), z0(s), s1 < s < s2 

be the initial data and let u = υ(x, y) be a solution of the differential 

equation.  

We assume that 

υx(x0(s), y0(s))x
J

0(s) + υy(x0(s), y0(s))y0
J (s)  0 

is satisfied. Set g(s) = υ(x0(s), y0(s)) and let s = h(g) be the inverse 

function. 

The solution of the Cauchy initial problem is given by u0 (h(υ(x, y))). 

This follows since in the problem considered a composition of a 

solution is a solution again, see an exercise, and since 

u0 (h(υ(x0(s), y0(s))) = u0(h(g)) = u0(s). 

Example: Consider equation ux + uy = 0 

With initial data x0(s) = s, y0(s) = 1, u0(s) is a given function. 

A solution of the differential equation is υ(x, y) = x − y. Thus 
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υ((x0(s), y0(s)) = s − 1 

0 0( 1) ( 1)u u x y      

is the solution of the problem. 

1.7 NON LINEAR EQUATIONS IN TWO 

VARIABLES 

Here we consider equation 

F (x, y, z, p, q) = 0,                                       (6) 

where z = u(x, y), p = ux(x, y), q = uy(x, y) and F ∈ C
2
 is given such 

that 

2 2
p qF  + F 0  

In contrast to the quasilinear case, this general nonlinear equation is 

more complicated.  

Together with (6) we will consider the following system of ordinary 

equations which follow from considerations below as necessary 

conditions, in particular from the assumption that there is a solution of 

(6). 

x
1
(t)    =    Fp                       (7) 

y
1
(t)    =    Fq                                   (8) 

z
1
(t)    =    pFp + qFq                                  (9) 

p
1
(t)    =    −Fx − Fup                                          (10) 

q
1
(t)    =    −Fy − Fuq.                                                    (11) 

 

We will see, as in the quasilinear case, that the strips defined by the 

characteristic equations build the solution surface of the Cauchy initial 

value problem. 

Let z = u(x, y) be a solution of the general nonlinear differential 

equation (6). 

Let (x0, y0, z0) be fixed, then equation (6) defines a set of planes 

given by (x0, y0, z0, p, q), i. e., planes given by z = v(x, y) which 

contain the point (x0, y0, z0) and for which vx = p, vy = q at (x0, y0).  

Theorem : There exists a solution of the Cauchy initial value problem 

provided the initial data are non characteristic. That is, we do not need 

the other remaining two characteristic equations. 
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The other two equations (10) and (11) are satisfied in this quasilinear 

case automatically if there is a solution of the equation, see the above 

derivation of these equations. 

The geometric meaning of the first three characteristic differential 

equations (7)–(11) is the following one. 

 Each point of the curve 

A : (x(t), y(t), z(t)) corresponds a tangential plane with the normal 

direction (−p, −q, 1) 

such that 

z
1
(t) = p(t)x

1
(t) + q(t)y

1
(t). 

This equation is called strip condition.  

On the other hand, let z = u(x, y) defines a surface, then z(t) := u(x(t), 

y(t)) satisfies the strip condition, where p = ux and q = uy, that is, the 

‖scales‖ defined by the normals fit together. 

Proposition 3: F (x, y, z, p, q) is an integral, i. e., it is constant along 

each characteristic curve. 

Proof: 

1 1 1 1 1d
( ( ), ( ), ( ), ( ), ( )

dt

0

x y z p q

x p y q z p z q

q p z q y q z

F x t y t z t p t q t F x F y F z F p F q

F F F F pF F qF F

F Fp F F p F F F F q

    

   

   



 

Corollary. Assume F (x0, y0, z0, p0, q0) = 0, then F = 0 along 

characteristic curves with the initial data (x0, y0, z0, p0, q0). 

Proposition 4: 

 Let z = u(x, y), u ∈ C
2
, be a solution of the nonlinear equation 

(2.6). Set 

z0 = u(x0, y0, ) p0 = ux(x0, y0), q0 = uy(x0, y0). 

Then the associated characteristic strip is in the surface S, defined by z 

= 

u(x, y). Thus 

( ) ( , ( ), ( )

( ) ( , ( ), ( )

( ) ( , ( ), ( )

x

y

z t u x t y t

p t u x t y t

q t u x t y t
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where (x(t), y(t), z(t), p(t), q(t)) is the solution of the characteristic system 

(7)–(11) with initial data (x0, y0, z0, p0, q0) 

Proof: Consider the initial value problem 

x
1
(t)    =    Fp(x, y, u(x, y), ux(x, y), uy(x, y)) 

y
1
(t)    =    Fq(x, y, u(x, y), ux(x, y), uy(x, y)) with the initial data x(0) 

= x0, y(0) = y0.  We will show that 

(x(t), y(t), u(x(t), y(t)), ux(x(t), y(t)), uy(x(t), y(t))) 

is a solution of the characteristic system. We recall that the solution 

exists and is uniquely determined. 

Set z(t) = u(x(t), y(t)), then (x(t), y(t), z(t)) ⊂ S, and 

z
1
(t) = uxx

1
(t) + uyy

1
(t) = uxFp + uy Fq . 

Set p(t) = ux(x(t), y(t)), q(t) = uy(x(t), y(t)), then 

P
1
(t)    =    uxxFp + uxy Fq q

1
(t)    =    uyxFp + uyy Fq . 

Finally, from the differential equation F (x, y, u(x, y), ux(x, y), uy(x, y)) 

= 0 it follows 

p
J
(t)    =    −Fx − Fup q

J
(t)    =    −Fy − Fuq. 

Definition: A strip (x(τ ), y(τ ), z(τ ), p(τ ), q(τ )), τ1 < τ < τ2, is said to be 

Non characteristic if 

x
J
(τ )Fq(x(τ ), y(τ ), z(τ ), p(τ ), q(τ ))−y

J
(τ )Fp(x(τ ), y(τ ), z(τ ), p(τ ), 

q(τ )) ƒ= 0. 

Example. A differential equation which occurs in the geometrical 

optic is 

2 2

x yu  + u  = f (x, y),  

where the positive function f (x, y) is the index of refraction. The level 

sets defined by u(x, y) = const. are called wave fronts. The 

characteristic curves (x(t), y(t)) are the rays of light. If n is a constant, 

then the rays of light are straight lines. In R
3
 the equation is 

2 2 2 

x y zu  + u  + u = f (x, y, z).  

Thus we have to extend the previous theory from R
2
 to R

n
, n ≥ 3. 

EXERCISE: 

1. Solve the initial value problem 

xux + yuy = u with initial data x0(s) = s, y0(s) = 1, z0(s), where z0 is 

given. 
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2. Solve the initial value problem 

−xux + yuy = xu , x0(s) = s, y0(s) = 1, z0(s) = e
−s

. 

3. Solve the initial value problem 

uux + uy = 1, x0(s) = s,  y0(s) = s, z0(s) = s/2 if 0 < s < 1. 

Check your progress 

3. Discuss about non linear equations in two variables 

------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------ 

1.8 LET US SUM UP 
In this unit we have discussed the definition of partial differential 

equation, Regular function F the general equation of first order for the 

unknown function.  

Characteristic equations or characteristic system and solutions of the 

associated initial value problems of Cauchy. Non linear equations in two 

variables. Solution of the general nonlinear differential equation. 

Solution of the Cauchy initial value problem provided the initial data 

are non characteristic.  

1.9 KEY WORDS 

 

1. The key defining property of a partial differential equation (PDE) is 

that there is more than one independent variable x, y……. 

2. A PDE is an identity that relates the independent variables, the 

dependent variable u, and the partial derivatives of u. It can be written 

as 

 F (x, y, u(x, y), ux (x, y), uy(x, y)) = F (x, y, u, ux , uy) = 0. 

3. The chain rule is used frequently in PDEs; for instance, 

    
1[ f (g(x, t ))]=f (g(x, t )) (x, t ).

x x

g 

 
 

4. The general linear partial differential equation of first order can be 

written as 
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n

i=1

 ai(x)uxi  + c(x)u = f (x)  for given functions ai, c and f .  

5. The general quasilinear partial differential equation of first order 

is 

n

i=1

 ai(x,u)uxi  + c(x,u) = 0  

6. Cauchy initial value problem if a solution of the homogeneous 

linear equation 

7. F (x, y, z, p, q) is an integral, i. e., it is constant along each 

characteristic curve. 

1.10 QUESTIONS FOR REVIEW 
 

1. Discuss about equation of first order 

2. Discuss about quasilinear equations 

3. Discuss about non linear equations in two variables 

1.11 SUGGESTIVE READINGS AND 

REFERENCES 
 

1. S. L. Ross, Differential Equations, 3rd Edn., Wiley India, 1984. 

2. DiBenedetto, Partial Differential Equations, Birkhaüser, 1995.  

3. L.C. Evans, Partial Differential Equations, Graduate Studies in 

Mathematics, Vol. 19, American Mathematical Society, 1998. 

4. I.N. Sneddon Elements of Partial Differential Equations 

McGrawHill 1986. 

5. R. Churchil & J. Brown, Fourier Series & Boundary Value 

Problems. 

6. R.C. McOwen , Partial Differential Equations  (Pearson Edu.) 2003.   

7. Duchateau and D.W. Zachmann, ―Partial Differential Equations,‖ 

Schaum, Outline Series, McGraw hill Series.  

8. Partial Differential Equations, -Walter A.Strauss 

9. Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 
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1.12 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 1.3 

2. Sec section 1.5 

3. See section 1.7 
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UNIT – 2 SECOND ORDER PARTIAL 

DIFFERENTIAL EQUATIONS 
 

STRUTURE 

2.0 Objective 

2.1 Introduction 

2.2 Linear equations of second order 

2.2.1 Normal form in two variables 

2.3 Quasilinear equations of second order 

2.3.1 Quasilinear elliptic equations 

2.4 Systems of first order 

2.5 System of second order 

2.6 Let us sum up 

2.7 Key words 

2.8 Questions for review 

2.9 Suggested readings and references 

2.10 Answers to check your progress 

2.0 OBJECTIVE 
 

After studying this unit we should able to learn about linear equations 

of second order, Normal form in two variables, Quasilinear equations 

of second order, Quasilinear elliptic. 

2.1 INTRODUCTION 
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The classification of differential equations follows from one single 

question: Can we calculate formally the solution if sufficiently many 

initial data are given?  

Consider the initial problem for an ordinary differential equation 

'

0(x) f(x,y(x)),y(x ) .oy y   Then one can determine formally the 

solution , provided the function  ( , )f x y  the initial value problem is 

formally given by a power series. This formal solution is a solution of 

the problem if f(x,y) is real analytic according to a theorem of Cauchy.  

Even in the case of ordinary differential equations the situation is more 

complicated if is implicitly defined, i.  e., the differential equation is   

( , )(x)) 0F x y   for a given function F. 

2.2 LINEAR EQUATIONS OF SECOND 

ORDER    

The general non linear partial differential equation of second order is 

     
2( , , , ) 0.F x u Du D v    

Where   '', : ,n

ux R u R R Du     and stands for all second 

derivatives. The function F is given and sufficiently regular with 

respect to its  
22 1n n   arguments. 

In this section we consider the case 

 1

, 1

( ) ( , , ) 0.
n

ik

x k

i k

a x u x f x u u


   -------(2.1) 

The equation is liner if 

  1

2

1

( ) ( ) ( ).
n

x

i

f b x u c x u d x


    

Concerning the classification the main part 

  1

, 1

( )
k

n
ik

x x
i k

a x u
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Plays the essential role. Suppose  
2 ,u C then we can assume, without 

restriction of generality, that  
,ik kia a , since  

1 1 ,

, 1 , 1

( )
k k

n n
ik ik

x x x x

i k i k

a u a u



 

   

Where 
* 1

( ) ( ).
2

ik ik kia a a   

Consider a hyper surface 
nS in R   defined implicitly by  

( ) 0, 0,x x x    see figure 2.1 

 

 

 

 

 

Assume  .u are given on S    

Problem: Can we calculate all other derivatives of a an S by using 

differential equal (3.1) and the given data ? 

We will find an answer if we map S   onto a hyper plane u on S  by a 

mapping 

 1( ,....., )n nx x x 
 

1( ,....., ), 1,..., 1,i i nx x i n     

For functions  i  such that 

 
1

1

( ,......
det 0

( ,.... )

n

nx x

 



 

In .nR   It is assumed that iand   are sufficiently regular. Such 

mapping   ( )x  exists, see an exercise. 

Figure 2.1: Initial manifold S 

x
2
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The above transform maps  S  onto a subset of the hyper plane defined 

by  0,n   

 

 

 

 

 

 

We will write the differential equation in these new coordinates. Here 

we use Einstein‘s convention i.e., we add terms with repeating indices. 

Since 

 ( ) ( ( )) ; ( ( )),u x u x v x    

Where  1 1( ,...., ) ( ,...., ),n nx x x and      we get 

 3
,

i

i
x

j

u v
x









---------------(2.2) 

 3

2

2
.

k i i
t

i i i
x x

j k j k

u v v
x x x dx

 

  


  


  
 

Thus, differential equation (3.1) in the new coordinates is given by  

  ( ) 0.
i

jk i i
oj

j k

a x v terms knownon S
x x

 

  
  

 
 

Since   
1( ,..... 1,0), 1,..., ,

k nu k n     are known, see (3.2), it follows 

that  , 1,...., 1,
k j

u l n 
   are known on  0 0.S  Thus we know all 

second derivatives  , 1...., 1,
k t

u l n 
   with the only exception of  

n n
u   

We recall that, provided a is sufficiently regular. 

 1 1,( ,...., 0)nk t
v 

  
 

Is the limit of  


2
 

 0 
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1, 1, 1 1 1

( ,.... , 1,..., 0) ( ,..., , 1,..., ,0)
k kl l n l nh

h

           
   

 

As  0.h   

Thus the differential equation can be written as 

 0

, 1

( ) .
n

jk n n
n n

j k j k

a x terms knownon S
x

 

 




 


 
    

It follows that we can calculate   n n
if 

  

 
, 1

( ) 0
i j

n
ij

x x

i j

a x  


 ---------(2.3) 

On  .S  This is a condition for the given equation and for the given 

surface .S  

Definition: The differential equation. 

 
, 1

( ) 0
i j

n
ij

x x

i j

a x  


  

Is called characteristic differential equation associated to the given 

differential equation (2.1). 

If  , 0,    , is a solution of the characeritic differential equation, 

then the surface defined by  0   is called characteristic surface. 

Remarks: The condition (3,3) is satisfied for each   with   0   of 

the quadratic matrix  ( ( ))ija x is positive or negative definite for each  

,x   which is equivalent to the property that all eigenvalues are 

different from zero and have the same sign.  This follows since there is 

a  ( ) 0x   such that, in the case that the matrix  ( )ija is positive 

definite. 

 
2

1

( ) ( )
n

ij

i j

iJ

a x x   


  

For all  .nR   .Here and in the following we assume that the matrix  

( )ija  is real and synmetirc. 
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The characterization of differential equation (3.1) follows from the 

signs of the eign values of a ( ( ))ija x   

Definition. Differential equation  (2.1) is said to be of type ( , , )    at  

x if    

eigenvalues of ( ( ))ija x   are positive,   eigenvalues are negative and  

   eigenvalues are zero  ( ).n      

In particular, equation is called  

Elliptic if it is of type (n,0,0),i.e., all eigenvalues are different from 

zero and have the same sign. 

Parabolic if it is of type  ( 1,0,1)n   or of type   (0, 1,1),n   i.e., on 

eigenvadues are different from zero and have the same sign. 

Parabolic if it is of type  ( 1,0,1)n   or of type (0, 1,1),n    i.e., one 

eigenvalue is zero and all the others  are different from zero and have 

the same sign.  

Hyperbolic if it is of type  ( 1,1,0)n  or of type  (1, 1,0),n  i.e., all 

eigenvalues are different from zero and one eigenvalue has another 

sign than all the others. 

REMARKS: 

1. According to this definition there are other types aside from 

elliptic, parabolic or hyperbolic equations. 

2. The classification depends in general on  x  . An example is the 

Tricomi equation, which appears in the theory of transonic flows. 

  0xx yyyu u   

This equation as elliptic if  0,y   parabolic if   0y   and hyperbolic 

for   0y   

Examples: 

1. The Laplace equation in  
3 0,R is u   where 

 .: xx yy zzu u u u     
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This equation is elliptic. Thus for each manifold  S given by  

 ( ., , ) : ( , , ) 0 ,x y z x y z  , where    is an arbitrary sufficiently regular 

function such that 0,  all derivatives of  u  are known on  ,S  

provided    u and u     are known on S . 

2. The wave equation , ( , , , ),xx yy zzu u u whereu u x y z t      is 

hyperbolic. Such a type describes oscillations of mechanical 

structures, for example. 

3. The heat equation  , ( , , , ),t xx yy zzu u u u whereu u x y z t     where  

( , , , ),u u x y z t   is parabolic. It describes, for example, the 

propagation of beat in a domain. 

4. Consider the case that the (real)coefficients  
ija  in equation (3,1) 

are constant. We recall that the matrix  ( )ijA a  is symmetric, i.e.,  

.TA A  In this case, the transform to principle axis leads to a 

normal form from which the classification of the equation is 

obviously. Let U be the associated orthogonal matrix, then  

 

1

2

0... 0

0 ... 0

0 0...

T

n

U AU







 
 

  
 
 

 

Here is  1( ,.... ),nU z z  ,where  1, 1,..., ,z l n , is an orthonoral system 

of eigenvectors to the eigenvalues   1.  

Set  
( ( ( ),Ty U x and y u Uy 

 then 

 
, 1 1

,
i j

n n
ij

x x i y j

i j i

a u y

 

 
---------(2.4) 

2.2.1 Normal form in two variables 
 

Consider the differential equation  

 ( , ) 2 ( , ) ( , )xx xy yya x y u b x y u c x y u    terms of lower order =0----- 

(2.5) in  
2.R  .  

The associated characteristic differential equation is  

 
2 22 0.x x y ya b c                                                           ------   (2.6) 
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We show that an appropriate coordinate transform will simplify 

equation (2.5) sometimes in such a way that we can solve the 

transformed equation explicitly. 

Let ( , )z x y  be  a solution of (2.6).  Consider the level sets  

 ( , ) : ( , ) .x y x y const   and assume 0y  at a point 0 0( , )x y of the 

level set. Then there is a function  ( )y x  .defined in a neighborhood of  

0x  such hat  ( , ( )) .x y x const   it follows  

 
'( )

,

x

y

y x



   

Which implies, see the characteristic equation (2.6), 

 
'2 '2 0ay by c    --------(2.7) 

Then, provided 0,a  we can calculate  
': y   from the (known) 

coefficients a,b and c 

 
2

1,2

1
( ).b b ac

a
     --------(2.8) 

These solutions are real if and only of  
2 0.ac b   

Equation (3.5) is hyperbolic if  
2 0.ac b  .parabolic if  

2 0ac b   

and elliptic if  
2 0.ac b   This follows from an easy session. Of the 

eigenvalues of the matrix 

 .
a b

b c

 
 
 

 

Normal form of a hyperbolic equation 

Let  and   are solutions of the characteristic equation (2.6) such that  

  
'

1 1
x

y


 


    

 1

2 2 ,x

y


 


    

Where  1 2and   are given by (2.8). Thus  and   are solutions of 

the linear homogeneous equations of first order 

 
1

2

( , ) 0 (2.9)

( , ) 0 (2.10)

x y

x y

x y

x y

  

  

    

    
                              

Assume  ( , ), ( , )x x y x y   are solutions such that 0 0,x and    

see an exercise for the existence of such solutions. 
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Consider two families of level sets defined by  

( , ) ( , )x x y and x y      

  

 

 

                                                     

 

 

 

 Figure 2.3 Level sets 

 

These level sets are characteristic curves of the partial differential 

equations (3,9) and (3,10), respectively, see an exercise of the 

previous chapter. 

Lemma. (i) Curves from different families can not touch each other. 

 ( ) 0.x y y xii       

Proof. (i): 

 
' ' 2

2 1 2 1

2
0.y y b ac

a
        

ii): 

 2 1 .x x

y y

 
 

 
    

Proposition 2.1. The mapping 2 1 .x x

y y

 
 

 
   transforms 

equation (2.5) into 

    

Where  ( , ) ( ( , ), ( , )).u x y        

Proof. He proof follows from a straightforward calculation. 

 x x xu      

 
y y yu      

 
2 22

xxx x x xu    
          lower order terms 

 
2 ( )xy x y x y y x x yu    

               lower order terms. 

 
2 22yy y y y yu    

          lower order terms 
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Thus 

   2 . . .,xx xy yyau bu cu L o t 
       

Where 

 
2 2: 2x x y ya b c        

 : ( )x x x y y x y ya b c             

 2 2: 2 .x x y ya b c        

The coefficients and   are zero since  and  are solutions of the 

characteristic equation. Since 

  
2 2 2( )( ) ,x y y xac b          

It follows from the above lemma that the coefficient    is different 

from zero   

Example: Consider the differential equation 

 0xx yyu u   

The associated characteristic differential equation is 

 
2 2 0.x y    

Since  1 21 1,and     the functions  and   satisfy differential 

equations. 

 

0

0

x y

x y

 

 

 

 
 

Solutions with  0 0and      

 , .x y x y      

Thus the mapping 

 ,x y x y      

Leads so the simple equation 

 ( ) 0.
    

Assume  
2C   is a solution, then  1( )f   for an arbitrary  

1C  

function  1( ).f    It follows. 

  1
0

( , ) ( ) ( ),f d g


        

Where   g  is an arbitrary  
2C  function. Thus each  

2C   solution of 

the differential equation can be written as  

  ( ) ( , ) ( ) ( ).f g        
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Where  
2, .f g C . On the other hand, for arbitrary   

2C  functions  

,f g the function (*) is a  solution of the differential equation  

0.u   . Consequently each  
2C  solution of the original equation  

0xx yyu u   is given by 

 ( , ) ( ) ( ).u x y f x y g x y     

Where  
2, .f g C   

Check Your Progress-1 

1. Show that Maxwell equations are a hyperbolic system. 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

--------------- 

 

2. Prove formula (2.22) for the normal on a surface. 

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------ 

2.3 QUASILINEAR EQUATIONS OF 

SECOND ORDER 
 

Here we consider the equation 

 1

, 1

( , , ) ( , , ) 0
j

n
ij

x x

i j

a x u u u b x u u


    --------(2.12) 

In a domain  ,nR  where  : .u R  . We assume that  
.ij jia a   

As in the previous section new can derive the characteristic equation  

 ,

1

( , , ) 0
i j

n
ij

x x

ij

a x u u  


   

In contrast to linear equations, solutions of the characteristic equation 

depend on the solution considered. 

 

2.3.1 Quasilinear elliptic equations 
There is a large class of quasilinear equations such that the associated 
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characteristic equation has no solution  , 0.    

Set 

  ( , , ) : , , .nU x z p x z R p R     

Definition : The quasilinear equation (3.12) is called elliptic if the 

matrix  ( ( , , ))ija x z p  is positive definite for each (x,z,y)  ( , . ) .x z p U  

Assume equation (3,12) is elliptic and let  ( , , )x z p  be the minimum 

and  ( , , )x z p  the maximum of the eigen values of  ( ),ija  then 

 
2

1

0 ( , , ) ( , , ) ( , , )
n

ij

i j

ij

x z p a x z p x z p    


     

For all  .nR   

Definition: Equation (2.12) is called uniformly elliptic if  /   is 

uniformly bounded in U. 

As important class of elliptic equations which are not uniformly 

elliptic (nonuniformly elliptic) is 

 
2

1

0.
1

i

n
x

i i

u
lower order terms

x u

 
    

    

  ------(2.13) 

The main part is the minimal surface operator (left hand side of the 

minimal surface equation). The coefficients  
ija  are 

 
2 1/ 2

2
( , , ) (1 ) ,

1

i jij

ij

p p
a x z p p

p


 

    
  

 

 
ija  denotes the Kronecker delta symbol. It follows that 

 2 23/ 2 1/ 2

1 1
, .

(1 ) (1 )p p
   


 

Thus equation (2.13) is not uniformly elliptic. 

The behavior of solutions of uniformly elliptic equations is similar to 

linear elliptic equations in contrast to the behavour of solutions of 

nonuniformly eflliptic equations. Typical examples for nonuniformly 

elliptic equations are the minimal surface equation and the capillary 

equation. 

2.4 SYSTEMS OF FIRST ORDER 

Consider the quasilinear system 
1

( , ) ( , ) 0,
k

n
k

u

k

A x u u b x u


  ----------
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(2.14) 

Where  
kA  are  ,m m matrices  matrices, sufficiently regular with 

respect to their arguments, and 

11 1
,

. ..

. , , ..

. ..

,

k

k

k

x

x

m mm x

uu b

u u b

u bu



    
    
    
     
    
    
    

    

 

We ask the same questions as above. Can we calculate all derivative 

of u in a neighbourhood of a given hypersurface  
nS in R   define by  

( ) 0, 0.x     provided   ( )u x  is given on  ?S   

For an answer we map S  onto a flat surface 0S by using the mapping  

( )x   of Section 3.1 and write equation (2.14) in new coordinates. 

Set  ( ) ( ( )),v u x   then 

.

1

( , )
k n

n
k

x o

k

A x u v terms knownon S


  

We  can solve this system with respect  ,n
v

 provided that  

 
1

det ( , ) 0
k

n
k

x

k

A x u 


 
 

 
  

Fir  .nR   

Definition.  (i) The system (2.14) is hyperbolic at  ( , ( )).x u x  if there is 

a regular linear mapping   ,Q  where  1( ,...., 1, ),n k      such 

that there exists m real roots   1( , ( ), ,.... 1),k 1,...,m,k nK x u x of     

 1( ( ), ,...., 1, ) 0nD xu x K     

For all  1( ,...., 1), wheren    

 1( , ( ), ,..., 1 ) ( , ( ), , ).nD x u x K C x u x x Q     

(ii) System (2.14) is parabolic if there exists a regular linear mapping  

Q  such that D is independent of k,I,e,. D depends on less than n 

parameters. 

(iii) System (2.14) is elliptic if  ( , , ) 0 0.C x u only if    

Remarks: In the elliptic case all derivatives of the solution can be 

calculated from the given data and the given equation. 
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Examples: 

1. Beltrami equations 

 
0 (2.15)

0, (2.16)

x x y

y x y

Wu bv cv

Wu au bv

     

     
 

Where W,a,b,c are given functions depending of  ( , ), 0x y W   and the 

matrix 

a b

b c

 
 
 

 

is positive definite. 

 The beltrami system is a generalization of Cauchy-Riemann 

equations. The function   ( ) ( , ) iv( , y), where z iy,f x u x y x x     is 

called a quasiconform mapping, see for example  9 ,  Chapter 12, for 

an application to partcial diferential equations. 

Set 

1 2
0

,
0

W b c
A A

a W b

    
    

   
 

Then the system (3.15), (3.16) can be written as 

 
1 2

0

0

yx

yx

uu
A A

vv

    
      

    
 

Thus 

 

1 1 2

2 2

2 1 2 1 1 2 2( , , ) ( 2 ),

W b c

C x y W a b W a b c

  

       

 

       

Which is different from zero if  0   according to the above 

assumptions. Thus the Beltrami system is elliptic. 

Maxwell equations 

The Maxwell equations in the isotropic case are 

 x tcvot H E E   ----------(2.17) 
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 ,x tcvot E H  -----------(2.18) 

Where 

 
1 2 3( , , )TE e e e Electric field strength,  1 2 3( , ), ( , , ),i ie e x t x x x x   

 
1 2 3( , , )TH h h h  magnetic field strength,   ( , ),i ih h x t  

 c speed of light, 

  specific conductivity. 

   di electricity constant. 

   magnetic permeability. 

Here  , ,c and   are positive constants. 

Set  
0 ,P , 1,..,3,

it i xP i     then the characteristic differential 

equation is  

  

3 2

3 1

0 / 0 0 0

0 0 / 0 0
0 /

0 0 / 0 0o

p c P P

p c P P

p C

 

 




 

The following manipulations simplifies this equation. 

(i) Multiply the first three columns with  / ,Po C  

(ii) Multiply the 5
th

 column with  3 6P and the th column with  2P

and add the sum to the 1
st
 column. 

(iii) Multiply the4th column with  3P and the 6
th

 column with  1P

and add the sum to the 2th column. 

(iv) Multiply the 4
th

 column with  3P and the 6
th

 column with - 1P

and add the sum to the 2th column. 

(v) Multiply the 4
th

 column with  2P and the 5
th

 column with  1P

and add the sum to the 3th column. 

(vi) expand the resulting determinant with respect to the elements 

of the 6
th

,5
th

 and 4h row. 

(vii) We obtain 

 

2

1 1 2 1 3

2

1 2 2 2 3

2

1 3 2 3 3

_ 0,

q p p p p p

p p q p p p

p p p p Q p







 

Where 
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x2 

S(t) 

d(t) 

 x1 

 
2 2

02
:q p g

c


   

 With 2 2 2 2

1 2 3: p .g p p   The evaluation of the above equation leads to 

  
2 2: ( ) 0, . .,g g g i e   

 
22 2

2
0.t t x

c


  

 
   

 
 

It follows immediately that Maxwell equations are a hyperbolic 

system, see an exercise. There are two solutions of this characteristic 

equation. The first, one are characteristic surfaces  ( ),S t defined by   

( , ) ( , ) 0,x t f n x Vt     

here we assume that 0 is in he range of  : .f R R Thus,  ( )S t  

is defined by n-x-Vt-c, where c is a fixed constant. In follows that the 

planes   ( )S t   is defined  by  ,nx Vt c   where c is a fixed constant. 

It follows that the planes ( )S t  with normal  n  move with speed V in 

direction of  n , are Figure 2.4 

 

 

 

 

 

                             

 Figure 2.4: ( )ld t is the speed of planeawaves    

Remark: According to the previous discussions, singularities of a 

solution of Maxwell equations are located at most on characteristic 

surface. 

A special case of Maxwell equations are the Telegraph equations. 

Which follow from Maxwell equation if div E=0 and div H=0 and div  

H=0,i.e., E and H are fields free of sources. In fact, it is sufficient to 
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assume that this assumption is satisfied at a fixed time to only, see an 

exercise. 

Since 

  x x x x xrot rot A grad div A A   

For each  
2C  vector field A, it follows from Maxwell equations the 

uncoupled system 

2 2x tt tE E E
c c

 
    

2 2x tt tH H H
c c

 
    

Equations of gas dynamics 

Consider the following quasilinear equations of first order 

 
1

1
( . )x xv v v p f

p
      (Euler equations). 

Here is  

 1 2 3( , )v v v v the vector of speed,  1 2 1 2 3( , ), ( , x , x ),v v x t x x   

 pressure,   ( , ),p x t   

 , ( , ),p density p p x t  

 1 2 3( , )f f f f  density of the external force,  ( , ),i if f x t  

 
1 2 3( . ) ( . , . , , )) .T

x x x xv v v v v v v v      

The second equation is 

 . 0x xpt v p pdiv v     (conservation of mass). 

Assume the gas is compressible and that ther is a function (state 

equation) 

 ( ),p p p  

Where 
'( ) 0if p 0.P P   Then the above system of four equations is 
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'

1

1
( . )v ( ) (2.19)

0. (2.20)

tv v p p f
p

p p divv v p

        

      

 

Where  
,x xand div div    i.e., these operators apply on the spatial 

variables only. 

The characteristic differential equation is here 

1

1

1

2

1

3

1 2

1
0 0

1
0 0

0
1

0 0

3

dx
x

dt

dx
x

dt

dx
x

dt

dx
Xx Xx Xx

dt










  

  

Where 

( ).t x

dx
X X V

dt
    

Evaluating the determinant, we get the characteristic differential 

equation 

 
22

2'( ) 0.x

d d
p p

dt dt

 


   
     

   
-----------(2.21) 

The equation implies consequences for the speed of the characteristic 

surfaces as the following consideration shows. 

Consider a family ( )S t  of surfaces in  3R  defined by  ( , ) c,x t 

where  
3x R and cis a fixed constant. As usually, we assume that  

0,x     One of the two normals on  ( )S t  at a point of the surface 

( )S t  is given by, see an exercise. 

 .x

x

n








--------(2.22) 

Let  0 0 1 1( ) ( )Q S t and let Q S t   be a point on the line defined by  

0 ,Q sn  where n is the normal (3.22 on  0 0 1 1 0( ) ,oS t at Q and t t t t     

small, we 
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Figure 2.5 Definition of speed of a surface 

Definition :. The limit 

 
1 0

1 0

1 0

lim
t d

Q Q
P

t t





  

Is called speed of the surface  ( ).S t  

Proposition 2.3: The speed of the surface ( )S t  is 

 ...(2.23)
x

t
P




 


 

Proof. The proof follows from 0 0 0 0( , ) 0 ( , ) 0.Q t and Q dn t t       

where  1 0 1 0d Q Q and t t t        

Set  : .nv v n  In which is the component  of the velocity vector in 

directions n. From (2.22) we get 

 
1

.n x

x

v v 





 

Definition:   : ,nV P v   the difference of the speed of the surface and 

the speed of liquid particles, is called relative speed 

Figure 2.6: Definition of relative speed 

Q
1

 

 

 
0 
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Using the above formulas for P and  nu  it follows 

 
1x

n

x x x

vt d
V P v

dt

 

  


      

  
 

Them, we obtain from the characteristic equation (3.21) that  

 
2 2 22 2(V '( ) ) 0x x xV p p         

An interesting conclusion is that there are two relative speeds. V=0  

2 '( ).V P P  

Definition :  
'( )p p  is called speed of sound. 

Check your progress 

3. Discuss about linear equations of second order. 

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------ 

2.5 SYSTEMS OF SECOND ORDER 
 

Here we consider the system 

 1

, 1

( , , ) x

n
u kkl

k J

A x u u n


  lower order  terms =0,-------(2.24) 

Where,   ( )ktA are m m   matrices and  1( ,... ) .T

mu u u   We assume  

,kl lkA A  . Which is no restriction of generality provided  
2u C  is 

satisfied. As in the previous sections , the classification follows from 

the question where or not we can calculate formally the solution from 

the differential equations, if sufficiently many data are given on an 

initial manifold. Let the initial manifold. Let the initial manifold  S  be 

given by  ( ) 0x   and assume that  0.  . The mapping  ( ).x x 

, see previous sections, leads to 

 0 0, ,

1

.
n

kj

xk xt

kJ

A p terms knownon S  
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Where  ( ) ( ( )).v u x   

The charactreristic equation is here 

 
, 1

det 0.
k

n
kt

x xt

k j

A  


 
 

 
  

If there is a solution  with  0,  then it is possible that second 

derivatives are not continuous in a neighbor hold of S . 

Definition : The system is called elliptic if 

 
, 1

det 0
k

n
kt

x xt

k j

A  


 
 

 
  

For all  , 0.o    

2.6.1 Examples : 

Navier –Stokes equations: 

The navier-Stokes system for a viscous incompressible liquid is 

 
1

( . )
0

t x x xv v v p v        

 0.xdiv v   

Where p  is the (constant and positive) density of liquid 

   is the (constant and positive) viscosity of liquid. 

 ( , )v v x t  velocity vector of liquid particles,  
3 3,x or in  

 ( , )p p x t  pressure 

The problem is to find solutions u,p of the above system. 

Linear elasticity: 

Consider the system 

 

2

2
( ) ( ) .x x x

u
p u div u f

t
  


     


-------(2.25) 

Here is, in the case of an elastic body in   
3R , 

 1 2 3( , ) (v ( , ), ( , ), ( , ))u x t x t v x t v x t  displacement vector, 

 ( , )f x t  density of external force, 

p  (constant) density 

   (positive) Lame constants. 

The characteristic equation is det C-9, wehre the entries of the matrix 

C are given by 

 
2 2

, , 1( ) ( ).xj x j ij xc p             
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The characteristic equation is 

 
2 22 2(( 2 ) ( ).x t x tp p            

It follows that two different speeds P of characteristic surfaces ( ),S t  

defined by ( , ) ..,x t const   are possible, namely 

 1 2

2
, .P and P

p p

  
   

We recall that  / .t xP      

 

Exercise: 

1. Show that the differential equation 

( , ) 2 ( , ) ( , )xx xy yya x y u b x y u c x y u  +lower term=0 

Is elliptic if ac-b
2
>0, parabolic if ac-b

2
=0 and hyperbolic if ac-b

2
<0 

2. Show that hyperbolic case there exits a solution of 

1 0x y    , see equation (2.9) 

Such that 0  . 

Hint: Consider an appropriate Cauchy initial value problem. 

3. Determine the type of the following equation at (x, y) = (1, 

1/2). 

Lu := xuxx + 2yuxy + 2xyuyy = 0. 

4. Find all C
2 
solutions of uxx-4uxy+uyy=0 

Hint: Transform to principal axis and stretching of axis lead to the 

wave equation. 

5. Determine the type of uxx − xuyx + uyy + 3ux = 2x, where u = 

u(x, y). 

6. Transform equation 2(1 ) 0xx xyu y u   , u = u(x, y), into its 

normal form. 

7.  Transform the Tricomi-equation yuxx + uyy = 0, 

u = u(x, y), where y < 0, into its normal form. 

 

2.6 LET US SUM UP 

 



Notes 

 

In this chapter we have discussed about The general non linear partial 

differential equation of second order. Elliptic if it is of type (n,0,0), 

Parabolic if it is of type, Parabolic if it is of type  ( 1,0,1)n   or of type 

(0, 1,1),n   Hyperbolic if it is of type  ( 1,1,0)n  or of type  (1, 1,0)n  . 

There is a large class of quasilinear equations such that the associated 

characteristic equation has no solution. In the elliptic case all 

derivatives of the solution can be calculated from the given data and 

the given equation. Cauchy-Riemann equations Cauchy-Riemann 

equations. Maxwell equations. The Navier-Stokes equations. 

2.7 KEY WORDS 
 

1. The general nonlinear partial differential equation of second order is

  
2( , , , ) 0.F x u Du D v    

2.  Normal form in two variables 

3. Of the eigenvalues of the matrix 

.
a b

b c

 
 
   

4. Curves from different families can not touch each other. 

5. Solutions of the characteristic equation depend on the solution 

considered. 

6. There is a large class of quasilinear equations such that the 

associated characteristic equation has no solution  , 0.    

7. Beltrami equations 

8. Maxwell equations 

2.8 QUESTIONS FOR REVIEW 
 

1. Show that Maxwell equations are a hyperbolic system. 

2.  Consider Maxwell equations and prove that div E = 0 and div H = 0 

    for all t if these equations are satisfied for a fixed time t0. 

    Hint. div rot A = 0 for each C
2
-vector field A=(A1, A2, A3) 

3.  Prove formula (2.22) for the normal on a surface. 

4.  Prove formula (3.23) for the speed of the surface S(t). 

5. Discuss about linear equations of second order. 
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2.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 2.2 

2. See section 2.2 

3. See Section 2.5 
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UNIT – 3 WAVES AND DIFFUSIONS 
 

STRUTURE 

3.0 Objectives  

3.1 Introduction 

3.2 The wave equation 

3.3 Causality and Energy 

3.4 The diffusion equation 

3.5 Diffusion on the whole line 

3.6 Comparison of waves and diffusion 

3.7 Let us sum up 

3.8 Key words 

3.9 Questions for review 

3.10 Suggested readings and references 

3.11 Answers to check your progress 

 

3.0 OBJECTIVES 

 

After studying this unit you should be able to learn and understand 

about  

The wave equation, Causality and energy, The diffusion equation, 

Diffusion on the whole line, 

Comparison of waves and diffusion. 

3.1 INTRODUCTION 
 

In this chapter we study the wave and diffusion equations on the whole 

real line    x    . Real physical situations are usually on finite 

intervals. We are justified in taking x on the whole real line for two 

reasons. Physically speaking, if you are sitting far away from the 

boundary, it will take a certain the solutions we obtain in this chapter 

are valid. Mathematically speaking, the absence of a boundary is a big 

simplification. The most fundamental properties of the PDEs can be 
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found most easily without the complications of boundary conditions. 

That is the purpose of this chapter. We begin with the wave equation. 

3.2 THE WAVE EQUATION 

We write the wave equation as  

2

tt xxu c u for x              (1) 

(Physically, you can imagine a very long string.) This is the simplest 

second-order equation. The reason is that the operator factors nicely: 

 
2 0.tt xxu c u c c u

t x t x

     
      

     
           

(2) 

This means that, starting from a function of (x,t), you compute  

,t xu cu call the result v, then you compute ,t xu cu and you ought to 

get the zero function. The general solution is. 

  ( , ) ( ( ( )u x t f x ct g x ct                                                                            

(3) 

Where f and g are two arbitrary (twice differentiable) functions of a 

single variable. 

Proof. Because of (2), if we let 1 ,xv u cu  we must have  1 0.xv cu 

Thus we have two first-order equations. 

1 0xv cu         (4a) 

And 

    .t xu cu v         (4b) 

These two first-order equations are equivalent to (1) itself. Let‘s solve 

them one at a time. As we know from Section 1,2, equation (4a) has 

the solution  ( , ) ( ),v x t h x ct  ,where h is any function. 

So we must solve the other equation, which now takes the form 



Notes 

 

u cu ( )t x h x ct                                                                                                           

(4c) 

for the unknown function  u(x, t). It is easy to check directly by 

differentiation that one solution is  (‗) denotes the derivative 

u( , ) f(x ct), wheref(x) h(s) / 2c.x t    [A prime derivative of a 

function of one variable.] To the solution  f(x ct) we can add  

g(x ct) to get another solution (since the equation is linear). The most 

general solution of (4b) in fact turns out to be a particular solution plus 

any solution of the homogeneous equation; that is. 

u( , ) ( ) g(x ct),x t f x ct     

As asserted by the theorem. The complete justification is left to be 

worked out in Exercise-4. 

A different method to derive the solution formula (3) is to introduce 

the characteristic coordinates 

 /x ct x ct      

By the chain in rule, we have  .x tand c c            

Therefore,  2 2 .t x t x gc c and c c           So equation (1) takes 

the form 

 ( )( ) ( 2 )(2 ) 0.t x t x gc c u c c u            

Which means that  0sin 0.ug cec   The solution of this transformed 

equation is ( ) ( )u f g   The wave equation has a nice simple 

geometry. There two families of characteristic lines,  x ct  constant, 

as indicated in figure 1. The most general solution is the sum of two 

function. One, ( ),g x ct is a wave of arbitrary shape traveling to the 

right at speed c. The other,  ( ),f x ct is a wave of arbitrary shape 

traveling to the right at speed c. The other, ( ),f x ct is another shape 

traveling to the left at speed c. A ―movie‖ of  g( )x ct  is sketched in 

Figure 1 of Section 1,3. 
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Figure (1) 

INITIAL VALUE PROBLEM 

The initial –value problem is to solve the wave equation 

2 ,u xxu c u for x                                                           (1) 

With the initial conditions 

         1( ,0) ( ) ( ,0) ( ),u x x u x x                                                       

(5) 

Where  ( ) f(x) g(x).x                              (6)                                                                              

Then, using the chain rule, we differentiate (3) with respect to t and put 

t=0 to get 

               
' '( ) ( ) ( ).x cf x cg x                                                               (7) 

Let‘s regard (6) and (7) as two equations for the two unknown 

functions f and g. To solve them, it is convenient temporarily to 

change the name of the variable to some neutral name; we change the 

name of x to s. Now we differentiate (6) and divide (7) by c to get 

 
' ' ' ' '1

.f g and f g
c

      

Adding and subtracting the last pair of equations gives us 

' ' 1 '1 1
.

2 2
f and g

c c

 
 

   
      

   
 

Integrating, we get 
0

1 1
( ) ( )

2 2

x

f s s A
c

     

And  
0

1 1
( ) ( ) .

2 2

x

g s s B
c
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Where A and B are constants. Because of (6), we have A+B=0. This 

tells us what f and g are in the general formula (3). Substituting s=x+ct 

into the formula for f and s=xct into that of g, we get 

0 0

1 1 1 1
( , ) ( ) (x ct) .

2 2 2 2

x ct x ct

u x t x ct
c c

   
 

        

This simplifies to 

 
1 1

( , ) [ ( ) ( )] ( )
2 2

x ct

x ct
u x t x ct x ct s ds

c
  




                       (8) 

This is the solution formula for the initial-value problem, due to 
'd

Alembert in 1746.  

Assuming   to have a continuous second derivative
2( )written C   

and   to have a continuous first derivative  
1( ),C  we see from (8) 

that u itself has continuous second partial derivatives in x and t  

2( ).C  Then (8) is a bona fide solution of (1) and (5). You may 

check this directly by differentiation and by setting t=0. 

Example 1. 

For  ( ) 0 ( ) cos ,x and x x   the solution is u(x,t)=(1/2c)  

[sin( ) sin( )] (1/ ) cos sin .x ct x ct c x ct    Checking this result 

directly, we have  

2cos sin (1/ )cos xsinct, .n xx tt xxu c x ctu c sothat u v u     The initial 

condition is easily checked. 

Example 2. The Plucked String 

For a vibrating string the speed is 
 

/ p.c T Consider an infinitely 

long string with initial position  

 
0

b x
b for x a

a

x for x a


 


 





                                                                                                         

(9) 
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And initial velocity  ( ) 0x  for all x. This is a ―three-finger‖ pluck, 

with all three fingers removed at once. A ―movie‖ of this solution 

1
[ ( ) ( )]

2
x ct x ct     is shown in Figure 2 (Even though his solution 

is not twice differentiable, it can be shown to be a ―weak‖ solution, as 

discussed later.) 

Each of these pictures is the sum of two triangle functions, one moving 

to the right and one to the left ,as is clear graphically. To write down 

the formulas that correspond to the pictures requires a lot more work. 

The formulas depend on the relationships among the five numbers  

3 / 2, / 2. , 3 / 2, 2 ) . _ 0. ., 3 / 2 / 2,x a then x ct x a First if x a then x a a amdi x t Second if a x a then              

 

1

1 1 1 32
( , )

2 2 2 4 2

b x a
b bx

u x t x a b
a a



 
 

 
       
  
 
 

 

Third, if  / 2,x a then  

 
1 1 1

( , )
2 2 2

u x t x a x a 
    

       
    

 

 

1 1
( ) ( )

1 2 2

2

b x a b a x

b b
a a

 
  

    
 
 

 

 
1

2
b  
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And so on [see Figure 2].  

                                    Figure (2) 

EXERCISE 

1. Solve utt = c2uxx , u(x, 0) = ex , ut (x, 0) = sin x. 

2. Solve utt = c2uxx , u(x, 0) = log(1 + x 2), ut (x, 0) = 4 + x. 

3. The midpoint of a piano string of tension T, density ρ, and length l is 

hit by a hammer whose head diameter is 2a. A flea is sitting at a 

distance l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) 

How long does it take for the disturbance to reach the flea? 

4. Justify the conclusion at the beginning of Section 3.1 that every 

solution of the wave equation has the form f (x + ct) + g(x − ct). 

5. If both φ and ψ are odd functions of x, show that the solution u(x, t) 

of the wave equation is also odd in x for all t. 

6. Find the general solution of 3utt + 10uxt + 3uxx = sin(x + t ). 

3.3 CAUSALITY AND ENERGY 

CAUSALITY 
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        Figure (1) 

We have just learned that the effect of an initial position  ( )x is a pair 

of waves traveling in either direction at speed c and at half the original 

amplitude.  

The effect of an initial velocity   is a wave spreading out at speed  

c in both directions. So part of the wave may lag behind (if there is 

an initial velocity), but no part goes faster than speed c. The last 

assertion is called the principle of causality.  

It can be visualized in the xt plane in Figure 1. 

An initial condition (position or velocity or both) at the point  0( ,0)x

can affect the solution for t>0 only in the shaded sector, which is called 

the domain of influence of the point 0( ,0)x .  

As a consequence, if  and  vanish for  

, ( , ) 0 .x R thenu x t for x R ct    In words, the domain of influence 

of an interval  ( ) sec ( ).x R is a tor x R ct    

An ―inverse‖ way to express causality is the following. Fix a point (x,t) 

for t>0 (see figure 2). How is the number u(x,t) synthesized from the 

initial data  , ?  It depends only on the values of  

                                                   

                                               Figure (2) 
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 at the two points  ,x ct  and it depends only on the values of 

within the interval [x-ct,x+ct, and it depends only on the values of

within the interval  [ , ].x ct x ct  We therefore say that the interval  

( , )x ct x ct  is the interval of dependence of the point (x,t)on t=0. 

Sometimes we call the entire shaded triangle  the domain of 

dependence or the past history of the point (x,t). The domain of 

dependence is bounded by the pair of characteristic lines that pass 

through (x,t). 

ENERGY 

Imagine an infinite string with constants  .p and T Then  tt xxpu Tu for  

x   From physics we know that the kinetic energy is  
21
,

2
mv

which in our case takes the form  
21

.
2

tKE p u dx This integral, and the 

following ones, are evaluated from x    . To be sure that the 

integral converges, we assume that  ( ) ( )x and x  vanish outside an 

interval   .x R As mentioned above, u(x,t) [and therefore  1( , )]u x t

vanish for .x R ct  Differentiating the kinetic energy, we can pass 

the derivative under the integral sign (see Section A,3) to get  

 .t tt

dKE
p u u dx

dt
   

Then we substitute the PDE  tt xxpu Tu  and integrate by parts to get 

 .t x tt x

dKE
T Tu u T u u dx

dt
     

The term  t xTu u is evaluated at  x   and so it vanishes. But the final 

term is a pure derivative since  
21

( ) .
2

tx x x tu u u Therefore. 

 
21

.
2

x

dKE d
Tu dx

dt dt
    

Let  
21

PE .
2

xT u dx and let E KE PE   Then  

E/ dt dPE/ dt,ordE/ dt 0.ThusdK     
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2 21

( )
2

t xE pu Tu dx



         (1) 

Is a constant independent of t. This is the law of conservation of 

energy. 

In physics courses we learn that PE has the interpretation of the 

potential energy. The only thing we need mathematically is the total 

energy E. The conservation of energy is one of the most basic facts 

about the wave equation. Sometimes he definition of E is modified by 

a constant factor, but that does not affect its conservation. Notice that 

the energy is necessarily positive. The energy can also be used to 

derive causality . 

Example -1. 

The plucked string, Example 2 of Section 2.1. has the energy 

 

2 2
21 1

2
2 2

x

b Tb
E T dx T a

a a


 
  

 
  

In electromagnetic theory the equations are Maxwell‘s. Each 

component of the electric and magnetic fields satisfies the (three-

dimensional) wave equation, where is the speed of light. The principle 

of causality, discussed above, is the cornerstone of the theory of 

relativity. It means that a signal located at the position  0x at the instant  

0t cannot move faster than the speed of light The a signal of speed c 

starting from the point 0x at the 0t . It turns out that actually equal to c 

and never slower. Therefore, the causality principle is sharper in three 

dimension than in one. This sharp form is called Huygens‘s principle. 

Flatland is an imaginary two –dimensional world. You can think of 

yourself as a water bug confined to the surface of a pond. You would 

n‘t want to live here because Huygens‘ ‗s principle is not valid is two 

dimensions . Each sound you make would automatically mix with the 

―echoes‖ of your previous sounds. And each view would be mixed 

fully with the previous views. Three is the best of all possible 

dimensions. 

Exercise: 
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1. Use the energy conservation of the wave equation to prove that the 

only solution with φ= 0 and ψ = 0 is u=  0. (Hint: Use the first 

vanishing  theorem ) 

2. Show that the wave equation has the following invariance 

properties. 

a. Any translate u(x-y, t), where y is fixed, is also a solution. 

b. Any derivative, say ux, of a solution is also a solution. 

c. The dilated function u(ax, at) is also a solution, for any constant a. 

3. If u(x, t) satisfies the wave equation utt = uxx, prove the identity 

u(x + h, t + k) + u(x − h, t − k) = u(x + k, t + h) + u(x − k, t − h) 

for all x, t, h, and k. Sketch the quadrilateral Q whose vertices are the 

arguments in the identity. 

3.4 THE DIFFUSION EQUATION 
 

In this section we begin a study of the one-dimensional diffusion 

equation. 

 t xxu ku .                                                                  (1) 

Diffusions are very different from waves, and this is reflected in the 

mathematical properties of the equations. Because (1) is  harder to 

solve that the wave equation, we begin this section with a general 

discussion of some of the properties of diffusions. We begin with the 

maximum principle, from which we‘ll deduce the uniqueness of an 

initial –boundary problem.  

We postpone until the next section the derivation of the solution 

formula for(1 on the whole real line. 

Maximum Principle:  If  ( , )u x t  satisfies the diffusion equation in a 

rectangle  ( , ,0 )say o x l t T    in space-time, then the maximum 

value of  ( , )u x t is assumed either initially (t=0)  or on the lateral sides  

( 0 )x or x l   (see Figure1). 
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Figure (1) 

In fact, there is a stronger version of the maximum principle which 

asserts that the maximum cannot be assumed anywhere inside the 

rectangle but only on the bottom or the lateral sides (unless u is a 

constant). The corners are allowed. 

The minimum value has the same property; it too can be attained only 

on the bottom or the lateral sides. To prove the minimum principle. 

Just only the maximum principle to   [ ( , )].u x t [ ( , )].u x t  

These principles have a natural interpretation in terms of diffusion or 

heat flow. If you have a rod with no internal heat source, the hottest 

spot and the coldest spot can occur only initially or at one of the two 

ends of the rod. Thus a hot spot at time zero will cool off (unless heat 

is fed into the rod at an end. You can burn one of its ends but the 

maximum temperature will always be at the hot end, so that it will be 

cooler away from that end. Similarly, if you have a substance diffusing 

along a tube, its higher concentration can occur only initially or at one 

of the ends of the tube. 

If we draw a ―movie‖ of the solution, the maximum drops down while 

the minimum comes up. So the differential equation tends to smooth 

the solution out. (This is very different from the behavior of the wave 

equation‘). 

Proof of the Maximum Principal: We‘ll prove only the weaker 

version. (Surprisingly, its strong form is much more difficult to prove.) 

For the strong version. See [PW]. The idea of the proof is to use the 

fact, from calculus, that at an interior maximum the first derivatives 

vanish and the second derivatives vanish and  second derivatives 

satisfy inequalities such as  0.ttu   . If  we knew that  0ttu  at the 

maximum (Which we do not), then we‘d have  0ttu   as well as     
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so that  .t xxu ku  This contradiction would show that the maximum 

could only be somewhere on the boundary of the rectangle. However, 

because    could in fact be equal to zero,  

we need to play a mathematical game to make the argument work. 

So let M denote the maximum value of u(x,t) on the three sides t = 0, x 

= 0, and x = l. (Recall that any continuous function on any bounded 

closed set is bounded and assumes its maximum on that set). We must 

show that ( , )u x t M  throughout the rectangle R. 

Let  be a positive constant and let  
2( , ) u(x, t) cx .v x t    Our goal is 

to show that  
2( , )v x t M cl   throughout R. Once this is 

accomplished, we‘ll have   
2 2( , ) ( ).v x t M l x    This conclusion is 

true for any 0. Therefore,  ( , )u x t M  throughout R, which is what 

we are trying to prove. Now from the definition of v ,it is clear that   

2( , ) 0.v x t M l ont     on x = 0, and on x = l. this function v  

satisfies 

 
2

1 1 1( ) 2 2 0,xx xx xxv kv u k u x u ku k k              

What is the ―diffusion inequality.‖ Now suppose that  v(x,t) attains its 

maximum at an interior point   0 0( ).x t  That is,  0 00 ,0 .x l t T     By 

ordinary calculus, we know that  1 00 0 ( , )xx ov and v at x t  .This 

contradicts the diffusion inequality (2). So there can‘t be an interior 

maximum. Suppose now that v(x,t) has a maximum (in the closed 

rectangle) at a point on the top edge   0 0 .t T and x l   Then   

0 0 0 0( , ) 0 ( , ) 0,x xxv x t and v x t   as before. Further more, because  

0( , )x ov x t   is bigger than 0 0( , ),v x t    we have 

0 0 0 0
0

( , ) ( , )
( , ) lim 0t o

v x t v x t
v x t

  
 


 

As 0   through positive values. (This is not an equality because the 

maximum is only ―one sided‖ in the variable t.) We again reach a 

contradiction to the diffusion inequality.  
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But v (x,t) does have a maximum somewhere in the closed rectangle 

0 ,0 .x l t T     This maximum must be on the bottom or sides. 

Therefore  
2( , ) M lv x t     throughout R. this proves the maximum 

principle ( in its weaker version). 

UNIQUENESS     

The maximum principle can be used to give a proof of uniqueness for 

the Dirichlet problem for the diffusion equation. That is, there is at 

most one solution of 

( , ) 0 1 0

( ,0) ( )

(0, ) ( ) ( , ) ( )

t xxu ku f x t for x andt

u x x

u t g t u l t h t



    



 

 

For  four given functions , , , .f g and h   Uniqueness means that any 

solution is determined completely by it initial and boundary 

conditions. Indeed, let 2( , ) ( , )tu x t and u x t  be two solutions of (3). Let    

2tw u u   be their difference. Then   

1 0, ( ,0) 0, ( , ) 0, ( , ) 0. 0.xxw kw w x w o t w l t LetT          

 By the maximum principle, w(x,t) has its maximum for the rectangle 

on its bottom or sides – exactly where it vanishes. So w(x,t)  

( , ) 0.w x t   Therefore,  ( , ) 0.w x t  so that    

2(x, t) u ( , ) 0.tu x t for all t     

 Here is a proof of uniqueness for problem (3), by a very 

different technique, the energy method. Multiplying the equation for  

1 2w u u   by w itself, we can write 

2 21
0 0, )( ) ( ) ( ) .

2
t xx t x x xw w kw w w kw w kw        

(verify this by carrying out the derivatives on the right side .) upon 

integrating over  the interval  0 ,x l   we get 

 

1
2 1 2

0
0 0

1
0 .

2

l
x

x x x

t

w dx kw w K w dx



 
   

 
   

Because of the boundary conditions  (w = 0 at x = 0,l 



Notes 

 

  
1 1

2 2

0 0

1
[ ( , )] [ ( , )] 0,

2
x

d
w x t dx k w x t dx

dt
     

Where the time derivative has been pulled out of the x integral (see 

section a.3). Therefore, is decreasing, so 

  
1 1

2 2

0 0
[ ( , )] [ ( ,0)]w x t dx w x dx   

For 0.t   The right side of (4)vanishes because the initial conditions 

of u and v are the same, so that  
1

2 2

0
[ ( , ) ] [ ( ,0)]w x t dx w x dx  for  all t 

>0. So and for all w=0 and  1 2 0.u u for all t   

STABILITY 

This is the third ingredient  of well-posedness .It means that the initial 

and boundary conditions are correctly formulated. The energy method 

leads to the following form of stability of problem(3), in case  

1 1 2 20. ( ,0) ( ) ( ,0) ( ).h g f Let u x x and u x x                        

Then  1 2w u u   is the solution with the initial datum  1 2( ).x   So 

from (4) we have 

   
1 1

2 2

1 2 2
0 0 1
[ ( , ) ( , )] [ ( ) ( )] .u x t u x t dx x x dx      

On the right side is a quantity that measures the nearness of the initial 

data for two solutions, and on the left we measure the nearness of the 

solutions at any later time. Thus, if we start nearby (at t = 0), we stay 

nearby. This is exactly the meaning of stability in the ―square integral‖ 

sense. The maximum principle also proves the stability, but with a 

different way to measure nearness. Consider two solutions of (3) in a 

rectangle. We then have  1 2 0w u u     on the bottom. The maximum 

principle asserts that throughout the rectangle 

    1 2 1 2( , ) ( , ) max .u x t u x t       

The‖ minimum ― principle says that 

  1 2 1 2( , ) ( , ) max .u x t u x t      

Therefore, 
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 Max  1 2 1 2( , ) ( , ) max ( ) ( ) .u x t u x t x x     

Valid for all t >0. Equation (6) is in the same spirit as (5), but with a 

quite different method of measuring the nearness of functions. It is 

called stability in ―uniform stage‖ sense.  

Exercise: 

1. Consider the solution 1-x
2
-2kt of the diffusion equation. Find 

the locations of its maximum and its minimum in the closed rectangle 

0 1,0 }x t T     

2. Consider the diffusion equation t xxu u in {0 1,0 }x t     with 

u= (0, ) (1, )t u t =0 and u(x,0)=4x(1-x). 

Show that 0<u(x, t)<1 for all t>0and 0<x<1 

3. Prove the comparison principle for the diffusion equation : If u 

and v are two solutions, and if u v for t=0, for x=0, and for x=l then 

u v for 0 ,0t x l      

 

Check your progress 

Prove the maximum principal.  

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

------------------------------------------------------------- 

3.5 DIFFUSION ON THE WHOLE LINE 
 

Our purpose in this section is to solve the problem 

As with the wave equation, the problem on the infinite line has a 

certain ―Purity‖, which makes it easier to solve than the finite-interval 

problem. (The effects of boundaries will be discussed in the next 

several chapters.) Also as be served by a method very different from 

the methods used before.(The play no major role in the analysis.) 

Because the solution of (1) is not easy to derive, we first set the stage 

by making some general comments. 
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Our method is to solve it for a particular and then build the general 

solution from this particular one. We‘ll use five basic invariance 

properties of the diffusion equation (1). 

(a) The translate u(x – y,t) of any solution  u(x,t) is another 

solution for any fixed y. 

(b) Any derivative of a solution is again a solution. 

(c) A linear combination of solutions of (1) is again a solution of 

(1)(This is just linearly.) 

(d) An integral  of solutions is again a solution. Thus if S(x,t) is a 

solution of (1), then so is S(x – y,t) and so is 

 For any function g(y), as long as this improper integral converges 

approximately.  

(We‖ll worry about convergence later.) In fact, (d) is just a limiting 

form of (c). 

(e) If u(x,t) is a solution of (1), so is the dilated function , for any a 

> 0. Prove this by the chain rule: Let v(x,t)=            .  

Then    and                   

Our goal is to find a particular solution of (1) and then to construct all 

the other solutions using property (d). The particular solution we will 

look for is the one, denoted  , which satisfies the  special initial 

condition 

The reason for this choice is that this initial condition does not change 

under dilation. We‘ll find  in steps.      

         

                                                                                                 

STEP 1:  WE’LL LOOK FOR OF THE SPECIAL  FORM            

 ( , ) ( )
4

x
Q x t g p where p

kt
                                                 (4) 

And g is a function of only one variable (to be determined). (The 4k

factor is included only to simplify a later formula.) 

 Why do we expect Q to have this special form? Because 

property (e) says that equation (1) doesn‘t ―see‖ the dilation  
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, .x ax t at  Clearly. (3) doesn‘t change at all under the dilation. So 

Q(x,t), which is defined by conditions (1) and (3). Ought not seethe 

dilation either. How could that happen  In only one way: if Q depends 

on x and t solely through the combination  / .x t For the dilation takes  

/ into / / .x t ax at x t Thus let  / 4p x kt  and lok for Q 

which satisfies (1) and (3) and has the form (4). 

Step 2 : Using (4), we convert (1) into an ODE for g y use of the chain 

rule: 

 
4 1

'( )
2 4

t

g p x
Q g P

dp t t lt


  


 

 
4 1

'( )
4

x

g p
Q g P

dp t kt


 


 

 
4 1

'( )
4

x
xx

Q p
Q g P

dp x lt


 


 

 ' ''1 1 1
0 ( ) ( )

2 4
t xxQ kQ pg p g p

t

 
     

 
 

Thus 

 
'' '2 0.g pg   

This ODE is easily solved using the integrating actor exp  

2 ' 2

12 ( ). ( ) exp( )pdp xp p We getg p c p and    

 
2

2( , ) ( ) p

tQ x t g p c e dp c    

Step -3 We find a completely explicit formula  for Q. We ‗ve just shown that 

 
/ 4

2.
0

( , ) _
x kt

o

tQ x t c e dp c    

This formula is valid only for t>0. Now use (3), expressed as a limit as 

follows 

 
 

2/ 44

1 2
0

( , ) .
x kt

pQ x t c e dp c   
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Step 4: Having found Q, we now define  / .S Q x    (The explicit 

formula for S will be written below.) By property (b),S is also a 

solution of (1). Given any function   ,we also define 

By property (d), u is another solution of (1), we claim that u is the 

unique solution of (1),(2). To verify the validity of (2),w e write. 

  

2lim

1 2 1 20 0
0,1 .

2

p

f
Ifx Q c e dp c c c


       

 

2lim

1 2 1 20 0
0,0 .

2

p

f
If x Q c e dp c c c


        

See Exercise . Here lim means limit from the right. This determines the 

coefficients  1 2

1
1 .

2
c and c  Therefore, Q is the function 

 
2/ 4

0

1 1
( , )

2

x kt
pQ x t e dp



    

By property (d), u is another solution of (1). We claim that u is the 

unique solution of (1),(2). To verify the validity of (2),we write 

 ( , ) ( , ) ( )
Q

u x t x y t y dy
x







 

  

 [ ( , ) ( )Q x y t y dy
y







 

  

 
1( , ) ( ) ( ), ) ( ) y

yQ x y t y dy Q x y t y
y

 








    

  

Upon integrating by parts. We assume these limits vanish. In 

particular. Let‘s temporarily assume that ( )y  I self equals zero for  y

large. Therefore. 

  ( ,0) ( ,0) '( )u x Q x y y dy



   

 '( ) ( )
x

xy dy x  
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Because of the initial condition for Q and the assumption that  

'

'

( ,0) ( ,0) ( )

( , ) ( ) ( , ) ( ) ( )
x

u x Q x y y dy

Q x y t y dy Q x y t y x



  









 

     




 

Because of the initial condition for Q and the assumption that 

( ) 0.   This is the initial condition (2). We conclude that 96) is our 

solution formula, where 

 
2 /41

0.
2

x ktQ
S e for t

x kt


  


                                         (7) 

That is, 

2)1
( , )

4

x yu x t e
kt



 



                                      (8) 

 

S(x,t) is known as the source function, Green‘s function, fundamental 

solution, Gaussian, or propagator of the diffusion equation, or simply 

the diffusion kernel. It gives the solution of (1),(2) with any initial 

datum   . He formula only gives the solution for t>0. When t=0 it 

makes no sense. 

The source function S(x,t) is defined for all real x and for all t>0. S(x,t) 

is positive and is even in x[S(-x,t)=S(x,t)]. It looks like figure 1 for 

various values of t. For large t, it is very spread out. For small, t, it is a 
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very tall thin spike (a‖deha function‖) of height  
1/2.

(4 )kt


The area under 

its graph is 

 
21

( , ) 1qS x t dx e dq


 


 
    

By substituting  math type . 

 Now look more carefully at the sketch of 5(x,t) for a very small t, If 

we cut out the tall spike, he rest of S(x,t) is very small. Thus. 

  
max ( , ) 0 0S x t as t

x

 

 
 

Notice that the value of the solution u(x,t) given y (6) is a kind of 

weighted average of the initial values around the point x., Indeed, we 

an write 

 

 

( , ) ( , ) ( ) ( , ) ( ) i

t

u x t S x y t y dy S x y t y y



      

Approximately. This is the average of the solutions S(x-y T) with the 

weights  For very small t, the source function is a spike so that the 

formula exaggerates the values of near x. For any t>0 the solution is a 

spread out version of the initial values at t=0. 

Here‘s the physical interpretation. Consider diffusion . S(x-y,t) 

represents the result of a unit mass (say, I gram) of substance located at 

time zero exactly at the position y which is diffusing (spreading out) as 

time advances. For any initial distribution of concentration, the amount 

of substance initially in the interval y spreads out in time and 

contributes approximately the term  All these contributions are added 

up to get the whole distribution of matter. Now consider heat flow. 

S(x-y,t)represents the result of a ―hot spot‖ at y at time 0. The hot spot 

is cooling off and spreading its heat along the rod. 

Another physical interpretation is Brownian motion, where particles 

move randomly in space. For simplicity, we assume that the motion is 

one dimensional; that is, the particles move along a tube. Then the 

probability that a particle which begins at position x ends up in the 

interval (a,b) at time t is precisely  for some constant k, where S is 
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define in (7). In other words, if we let u(x,t) be the probability density 

(Probability density is  (x), then the probability at all later times is 

given by formula (6). That is, u(x,t) satisfies the diffusion equation. 

It is usually impossible to evaluate integral (8) completely in terms of 

elementary functions . Answers to particular problems, that is, to 

articular initial data ,are sometimes expressible in terms of the error 

function of statistics. 

  2

0

2
( ) .

x

rf x e dp


   

Notice that by Exercise 6, lim  

Example 1 

From (5) we can write Q(x,t) in terms of   as 

 

 

1 1
( , )

2 2 4

x
Q x t rf

kt


 
   

 
 

Example -2 :Solve the diffusion equation with the initial condition 

u(x,0) To do so, we simply plug this into the general formula (8): 

  
2( ) / 4( , ) .

4

x y kt yx
u x t e e dy

kt





  


   

This is one of the few fortunate examples that can be integrated. The 

exponent is 

 

2 22 4

4

x xy y kty

kt

  
  

Completing the square in the y variable, it is 

 
 

2 22 4

4

y xy y kty

kt

  
  

We let 

So that then. 

 
 

2( 2 )
.

4

y kt x
kt x

kt

 
    

We let  ( 2 ) / 4 / 4 .p y kt x ktsothat dp dy kt Then     
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2

( , ) kt x p kt xdp
u x t e e e




  


   

By the maximum principle, a solution in a bounded interval can not 

grow in time. However, this particular solution grows, rather than 

decays, in time. The reason is that the left side of the rod is initially 

very hot math type 

And the heat gradually diffuses throughout the rod. 

EXERCISE: 

1. Solve the diffusion equation with the initial condition 

( )x l for x l    and ( ) 0x for x l    

Write your answer in terms of ( )rf x  

2. Do the same for ( ) 1 0 ( ) 3 0x for x and x for x      

3. Solve the diffusion equation if 

( ) 0 ( ) 0xx e for x and x is for x     

Check your progress 

1. Explain about five basic invariance properties of the diffusion 

equation.  

---------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------

--------------------------------------------- 

3.6 COMPARISION OF WAVES AND 

DIFFUSION 
We have seen that the basic property of waves is that information gets 

transported in both directions at a finite speed the basic property of 

diffusions is that the initial disturbance gets spread out in a smooth 

fashion and gradually disappears. The fundamental properties of these 

two equations can be summarized in the following table. 

Property Waves Diffusions 

(i) Speed of 

propagation ? 

(ii) Singularities 

Finite  

Transported along 

characteristic 

Infinite 

Lost immediately 
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for t>0? 

(iii) Well-posed for 

t>0? 

(iv) Well-posed for 

t<0? 

(v) Maximum 

principle 

(vi) Behavior as  

(vii) Information 

(speed =c) 

Yes 

Yes 

No 

Energy is 

Constant so does 

not decay 

Transported 

Yes (at least for 

bounded solutions) 

No 

Yes 

Decays to zero (if  

 integrable) 

Lost gradually 

 

For the wave equation we have seen most of these properties already. 

That there is no maximum principle  is easy to see. Generally 

speaking, the wave equation just moves information along the 

characteristic lines. In more than one dimension we‘ll see that it 

spreads information in expanding circles or spheres. 

For the diffusion equation we discuss property (ii), hat singularities are 

immediately lost, in future sections. 

 The solution is differentiable to all orders even if the initial data are 

not Properties (iii),(v), and (vi) have been shown already. The fact that 

information is gradually lost [property (vii)] is clear from the graph of 

a typical solution, for instance, from S(x,t). 

As for property (i) for diffusion equation, notice from formula (2,4,8) 

that the value of u(x,t) depends on the values of the initial datum  ( )y

for all y, were  .y    Conversely, the value of  at a point  0x

has an immediate effect everywhere (fort>0),even though most of its 

effect is Exercise 2(b) shows that solutions of the diffusion equation 

can raved at any speed. This is in stark contrast to the wave equation 

(and all hyperbolic equations). 

As for (iv), there are several ways to see that the diffusion equation is 

not well-posed for t<0)(―backward in time‖).One way is the following. 

Let 

 
21

( , ) sin n ktu x t nxe
n

  



Notes 

 

You can check hat this satisfies the diffusion equation for all x,t.Also  

 1( ,0) sin 0nu x n nx   Uniformly as  .n    But consider any t<0, 

say t-1. Then  

 
211. ( , 1) sin kn

nt Thenu x n nxe      Uniformly as .n   except for a 

few x. Thus  nu  

is close to the zero solution at the t=0 but not at time t=-1. This violates 

the stability, in the uniform sense at least. 

Another way is to let  ( , ) ( , 1).u x t S x t  This is a solution of the 

diffusion equation  

 1 1, .xxu ku fort x        But  (0, ) 1,u t ast    as we saw 

above. So we cannot solve backwards in time with the perfectly nice-

looking initial data  

In time with the perfectly nice-looking initial data  
2 / 4.1(4 ) xk e    

Besides, any physicist knows that heat flow, Brownian motion, and so 

on, are irreversible professes Going backward leads to chaos. 

Exercise: 

1.Show that there is no maximum principal for the wave equation. 

2. Consider the travelling wave u(x, t)=f(x-at) where f is a given 

function of one variable. 

a) If it is the solution of the wave equation, show that the speed must 

be a c  (unless f     is a linear function) 

b) If it is the solution of the diffusion equation, find f and show that the 

speed a is  arbitrary. 

Check your progress 

3. Write the comparisions of waves and diffusion 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

------------------------------------------------------------- 
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3.7 LET US SUM UP 
 

In this unit we have discussed the Wave equation, Causality and 

energy, the diffusion equation, Different ion on the whole line, 

Comparison of waves and diffusion and solved examples. Uses of  

PDEs on physical situations . The most fundamental properties of the 

PDEs can be found most easily without the complications of boundary 

conditions. Principle of causality. In electromagnetic theory the 

equations are Maxwell‘s. One-dimensional diffusion equation. 

Maximum principle.  

3.8 KEY WORDS 
 

1. The wave equation is 2

tt xxu c u for x      

2. The effect of an initial position  ( )x is a pair of waves 

traveling in either direction at speed c and at half the original 

amplitude. 

3. An initial condition (position or velocity or both) at the point  

0( ,0)x can affect the solution fo t>0 only in the shaded sector, which is 

called the domain of influence of the point 0( ,0)x . 

4. Kinetic energy is  
21
,

2
mv which in our case takes the form  

21
.

2
tKE p u dx  

5. Diffusions are very different from waves, and this is reflected 

in the mathematical properties of the equations. 

6. Maximum Principle:  If  ( , )u x t  satisfies the diffusion equation 

in a rectangle  ( , ,0 )say o x l t T    in space-time, then the 

maximum value of  ( , )u x t is assumed either initially (t=0)  or on the 

lateral sides  ( 0 )x or x l   

7. The maximum principle can be used to give a proof of 

uniqueness for the Dirichlet problem for the diffusion equation. 

8. The basic property of waves is that information gets transported 

in both directions at a finite speed.  
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3.9 QUESTIONS FOR REVIEW 
 

1. Discuss the wave equation 

2. Discuss the diffusion equation 

3. Write comparisons of waves and diffusion. 

3.10 SUGGESTED READINGS AND 

REFERENCES 
 

1. S. L. Ross, Differential Equations, 3rd Edn., Wiley India, 1984. 

2. DiBenedetto, Partial Differential Equations, Birkhaüser, 1995.  

3. L.C. Evans, Partial Differential Equations, Graduate Studies in 

Mathematics, Vol. 19, American Mathematical Society, 1998. 

4. I.N. Sneddon Elements of Partial Differential Equations 

McGrawHill 1986. 

5. R. Churchil & J. Brown, Fourier Series & Boundary Value 

Problems. 

6.R.C. McOwen , Partial Differential Equations  (Pearson Edu.) 2003.   

7. Duchateau and D.W. Zachmann, ―Partial Differential Equations,‖ Schaum, 

Outline Series, McGraw hill Series.  

8.Partial Differential Equations, -Walter A.Strauss 

9.Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 

 

3.11ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 3.5 

2 .See section 3.5 

3. See section 3.6 
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UNIT-4 REFLECTIONS AND 

SOURCES 
 

STRUTURE 

4.0 Objective 

4.1 Introduction 

4.2 Diffusion on the half-line 

4.3 Reflection of waves 

4.4 Diffusion with a source 

4.5 Source on a half-line 

4.6 Waves with a source 

4.7 Well-posedness 

4.8 Method using Green‘s theorem 

4.9 Let us sum up 

4.10 Key words 

4.11 Questions for review 

4.12 Suggested readings and references 

4.13 Answers to check your progress 

4.0 OBJECTIVE 
 

After studying this unit we will learn and understand about Diffusion 

of the half –line, Reflection of waves, Diffusion with a source, Source 

on a half line, Waves with a source, Well-posedness, Method of using 

Green‘s theorem. 

4.1 INTRODUCTION 
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In this chapter we solve the simplest reflection problems, when there is 

only a single point of reflection at one end of a semi-infinite line. In 

Chapter 4we shall begin a systematic study of more complicated 

reflection problems. In Sections 4.5 and 4.6 we solve problems with 

sources: that is, the inhomogeneous wave and diffusion equations.  

4.2 DIFFUSION ON THE HALF-LINE 
 

Let‘s take the domain to be D = the half-line  0, and take the 

Dirichlet 

boundary condition at the single endpoint x = 0. So the problem is 

 

   

 

0 0 , 0 ,

,0 0

0, 0 0

t xxk in x t

x x for t

t for x

 

 



       

 

 

 

The PDE is supposed to be satisfied in the open region {0 <x <∞,0 <t 

<∞}.  

If it exists, we know that the solution v(x, t) of this problem 

is unique because of our discussion in the previous section. 

 It can be interpreted, for instance, as the temperature in a very long 

rod with one end immersed in a reservoir of temperature zero and with 

insulated sides. 

In fact, we shall reduce our new problem to our old one. Our method 

uses the idea of an odd function. Any function 1. .
2 2

 
  that satisfies 

   x x      is called an odd function. Its graph  y x  is 

symmetric with respect to the origin 
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Figure 1 

(See Figure 1).Automatically (by putting 0x  in the definition),

 0 0  .For a detailed discussion of odd and even functions, see 

section 5.2. 

 Now the initial datum  x of our problems is defined only for 0.x   

Let odd be the unique odd extension of  to the whole line. That is, 

 

 

 

0

0

0 0.

odd

x for x

x x for x

for x



 




   




 

The extension concept too is discussed in the coming chapter. 

Let  ,u x t be the solution of  

   

0

,0

t xx

odd

u ku

u x x

 


 

For the whole line ,0 .x t        

We know that,      , , .oddu x t S x y t y dy



   

Its ―restriction,‖ 

   , , ,x t u x t for x o    

Will be the unique solution of our new problem (1) . There is no 

difference at all between  and u except that the negative values of  x  

are not considered when discussing . 
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Why is  ,x t  the solution of (1)? Notice first that  ,u x t  must also 

be an odd function of x . 

 That is,    , , .u x t u x t  
 
Putting  x 0 , it is clear that  u 0, 0t 

.So the boundary condition  0, 0t   is automatically satisfied! 

Furthermore,   solves the PDE as well as the initial condition for 

0x  , simply because it is equal to u for 0x   and u satisfies the same 

PDE for all x and the same initial condition for 0x  . 

The explicit formula for  x, t  is easily deduced from (4) and (5). 

From (4) and (2) we have 

         
0

0
, , , .u x t S x y t y dy S x y t y dy 




       

Changing the variable –y to +y in the second integral, we get 

       
0

, [ , , ] .u x t S x y t S x y t y dy


     

(Notice the change in the limits of integration.) Hence for 

0 ,0x t       we have 

       
2/4 2/4

0

1
, .

4

kt kt
x y x y

x t e e y dy
kt

 



     

    

This is the complete solution formula for (1). 

We have just carried out the method of odd extensions or reflection 

method, so called because the graph of  x  across the origin. 

Example 1: 

Solve (1) with   1.x   The solution is given by formula (6). This 

case can be simplified as follows. Let   / 4p x y kt   in the first 

integral and   / 4q x y kt   in the second integral. Then 
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2 2/ 4
/ /

/ 4

1 1 1 1
2 2 2 24 4

4

,

.

x kt
p dp q dq

x kt

x x

kt kt

x

kt

u x t e e

rf rf

rf

 

 




 


 

      
   



 

 

Now let‘s play the same game with the Neumann problem 

   

 

0 0 ,0

,0

0, 0.

t xx

x

w kw for x t

w x x

w t



       





 

In this case the reflection method is to use even, rather than odd, 

extensions. An even function is a function   such that 

   .x x     If  is an even function, then differentiation shows 

that its derivative is an odd function. So automatically its slope at the 

origin is zero:    0 0.If x    is defined only on the half-line, its 

even extension is defined to be 

   

 

{ 0

{ 0

even x x for x

x for x

 



 

  
 

By the same reasoning as we used above, we end up explicit formula 

for  , .w x t  It is  

       
2 2

/4 /41

4 0
, .

x y kt x y kt

kt
w x t e e y dy




      
  

 

This is carried out in Exercise 3. Notice that the only difference 

between (6) and (9) is a single minus sign! 

EXERCISE: 

   

   

1. ; ,0 ; 0, 0 0 .

2. ; ,0 ; 0, 1 0 .

x

t xx

t xx

Solve u ku u x e u t onthe half line x

Solve u ku u x u t onthe half line x

      

     
 

3. Derive the solution formula for the half-line Neumann Problem 

     0 0 ,0 ; 0, 0; ,0 .t xx xw kw for x t w t w x x         
 

4. (a) Use the method of Exercise 4 to solve the Robin Problem: 
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: 0

0

: ,0 0 0,

: 0, 0, 0 0,

t xx

x

DE u ku onthe half line x

and t

IC u x x for t and x

BC u t hu t for x

    

  

   

  
 

Where h is a constant. 

(b) Generalize the method to the case of general initial data 
 .x

 

4.3 REFLECTIONS OF WAVES 
 

Now we try the same kind of problems for wave equation as we did in 

Section 3.1 for the diffusion equation. We again begin with the 

Dirichlet problem on the half-line  0, .  Thus the problem is  

       

 

2: 0 0

: ,0 , ,0 0

0

: 0, 0 0

.

t t xx

t

DE u c for x

and t

IC x x x x for t

and x

BC t for x

and t



   



    

    

  

  

 

      

The reflection method is carried out in the same way as in section 3.1. 

Consider the odd extension of both of the initial functions to the whole 

line,    .odd oddx and x  Let  u ,x t  be the solution of the initial-

value problem on  ,   with the initial data   .odd oddx and  Then 

 u ,x t  is once again an odd function of x . Therefore,  u 0, 0,t   so 

that the boundary condition is satisfied automatically. Define 

   , , 0x t u x t for x      [the restriction of u to the half-line]. 

Then  ,x t  is precisely the solution we are looking for. From the 

formula in Section 2.1, we have for 0,x   

         
1 1

, , .
2 2

x ct

odd odd odd
x ct

x t u x t x ct x ct y dy
c
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Let‘s ―unwind‖ this formula, recalling the meaning of the odd 

extensions. First we notice that for x c t  only positive arguments 

occur in the formula, 

 

Figure 1 

So that  ,u x t  is given by the usual formula: 

       1 1
2 2

,

.

x ct

c

x ct

x t x ct x ct y dy

for x c t

   




 
     

 




 

But in the other region 0 x c t , we have     ,odd x ct ct x      

and so on, so that 

         
0

1 1 1
2 2 2

0

, .

x ct

c c

x ct

x t x ct ct x y dy y dy    




              

 

Notice the switch in signs! In the last term we change variable 

y y  to get  1
2

.

cl x

c

cl x

y dy




  Therefore, 

       1 1
2 2

,

cl x

c

cl x

x t ct x ct x y dy   




       
 

For 0 .x c t  The complete solution is given by the pair of formulas 

(2) and (3). The two regions are sketched in Figure 1 for t 0 . 

Graphically, the result can be interpreted as follows. Draw the 

backward characteristics  from the point  ,x t . In case  ,x t  is in the 

region x<ct, one of the characteristics hits the t axis  0x   before it 
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hits the x axis, as indicated in Figure 2. The formula (3) shows that the 

reflection induces a change of 

 

Figure-2 

Sign. The value of  , tx now depends on the values of   at the pair 

of points ct x  and on the values of   have canceled out. The shaded 

area D in Figure 2 is called the domain of dependence of the point 

 , .x t  

The case of the Neumann problem is left as an exercise. 

THE FINITE INTERVAL 

Now let‘s consider the guitar string with fixed ends: 

           2 ,0 ,0 0 , 0, , 0.tt xx tc x x x x for x l t l t             

 

This problem is much more difficult because a typical wave will 

bounce back and forth an infinite number of times. Nevertheless, let‘s 

use the method of reflection. This is a bit tricky, so you are invited to 

skip the rest of this section if you wish. 

This initial data    x and x  are now given only for 0 .x l   We 

extend them to the whole line to be ―odd‖ with respect to both x=0 and 

x=l: 

       2 .ext ext ext extx x and l x x          

The simplest way to do this is to define 
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0 1

0

x for x

x for l x





 

     ext x 

extended to be of period 2l.
 

See Figure 3 for an example. And see Section 5.2 for further 

discussion. ―Period 2l‖ means that    2ext extx l x    for all x. We 

do exactly the same for  x (defined for 0 1x  ) to get  ext x  

defined for .x     

Now let  ,u x t  be the solution of the infinite line problem with the 

extended initial data. Let   be the restriction of u to he interval  0 .l

Thus  ,x t is 

 

 

Given by the formula 

       1 1 1
2 2 2

,

x ct

ext ext extc

x ct

x t x ct x ct s ds   




       

for 0 x l  . This simple formula contains all the information we need. 

But to see it explicitly we must unwind the definitions of ext and ext . 

This will give a resulting formula which appears quite complicated 
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because it includes a precise description of all the reflections of the 

wave at both of the boundary points x o and x l.   

The way to understand the explicit result we are about to get is by 

drawing a space-time diagram (Figure 4). From the point  , ,x t  we 

draw the two characteristic lines and reflect them each time they hit the 

boundary. We keep track of the change of sign at each reflection. We 

illustrate the result in Figure 4 for the case of a typical point.  , .x t  

We also illustrate in Figure 5 the definition of the extended function 

 .ext x (The same picture is valid for .ext ) For instance, for the point  

 , .x t as  drawn in Figure 4 and 5, we have 

       4 2 .ext extx ct l x ct and x ct x ct l              

The minus coefficient on  4x ct l     comes from the odd 

number of reflections  3 .  The plus coefficient on  2x ct l    

comes from the even  

 

number of reflections  2 .  Therefore, the general formula (5) 

reduces to  

     

   

    

0

1

0 3

1 1
, 2 4

2 2

1
2

2

2 4

l

x ct l

x ct

l

x t x ct l l x ct

y l dy y dy
c

y l dy y l dy

  

 

 



 



     

    


     

 

   

But notice that there is an exact cancellation of the four middle 

integrals, as we see by changing 2 2 .y y and y l y l       So, 
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changing variables in the two remaining integrals, the formula 

simplifies to 

     

   
4

2

1 1
, 2 4

2 2

1 1
.

2 2

l l x ct

x ct l l

x t x ct l l x ct

s ds s ds
c c

  

 
 

 

     

  
 

Therefore, we end up with the formula 

       
4

2

1 1
, 2 4

2 2 2

l x ct

x ct l

ds
x t x ct l l x ct s

c
   

 

 
       

 

at the point  ,x t  illustrated, which has three reflections on one end 

and two on the other. Formula (6) is valid only for such points. 

 

The solution formula at any other point  ,x t is characterized by the 

number of reflections at each end  0, .x l  This divides the space-

time picture into diamond-shaped regions as illustrated in Figure 6. 

With each diamond the solution  ,x t  is given by a different 

formula. Further examples may be found in the exercises. 

The formulas explain in detail how the solution looks. However, the 

method is impossible to generalize to two- or three-dimensional 

problems, nor does it work for the diffusion equation at all. Also it is 

very complicated! Therefore, in Chapter 4 we shall introduce a 

completely different method (Fourier‘s ) for solving problems on a 

finite interval. 

EXERCISE: 



Notes 

 

1. Solve the Neumann problems for the wave equation on the half-

line 0 .x    

The longitudinal vibrations of a semi-infinite flexible rod satisfy the 

wave equation 2 0.u xxu c u for x   Assume that the end 0x   is free 

( 0);uu   it is initially at rest but has a constant initial velocity V for 

a x 2a   and has zero initial velocity elsewhere. Plot u versus x at 

the times 3 2 30, , , ,and .
2

a a a at
c c c c

  

A wave  f x ct  travels along semi-infinite string  0 x    for 

0.t   Find the vibrations  ,u x t  of the string for 0t   if the end 

0x   is fixed. 

2. Solve      4 0 ,u 0, 0, ,0 1, ,0 0u xx tu u for x t u x u x        

using the reflection method. This solution has a singularity; find its 

location. 

3. Solve  

 

Where V, a, and c are positive constants and a c.  

(a) Show that  

(b) Show that    2 ,
2ext odd

xx x l
l

    where  .  denotes the 

greatest integer function. 

(c) Show that 

 ext x 

x
x l

l


  
  

  

x
x l l

l


  
     

  

x
if even

l

 
 
 

.
x

if odd
l

 
 
 

 

4. For the wave equation in a finite interval  0, l  with Dirichlet 

conditions, explain the solution formula within each diamond-shaped 

region. 

       2 0 ,0 t ,u ,0 0, ,0 , 0, 0, 0,u xx t t xu c u in x x u x V u t au t          

     .odd x sign x x 
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(a) Find 

           2 22
,2 0 1, ,0 1 , ,0 1 , 0, 1, 0.

3
tt xx tu if u u in x u x x x u x x u t u t

 
         

 

 

(b) Find 
1 7

, .
4 2

u
 
 
   

Check your progress 

1. Explain about Reflection of waves 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------

 

4.4 DIFFUSION WITH A SOURCE 
 

In this section we solve the in homogeneous diffusion equation on the 

whole line, 

   

   

, ,0

,0

t xxu ku f x t x t

u x x

        


 

With  ,f x t  and  x arbitrary given functions. For instance, if 

 ,u x t represents the temperature of a rod, then  x  is the initial 

temperature distribution and  ,f x t  is a source  

(or sink) of heat provided to the rod at later times. 

 We will show that the solution of (1) is 

     

   
0

, ,

, , .
t

u x y S x y t y dy

S x y t s f y s dy ds










 

  



 
 

Notice that there is the usual term involving the initial data   and 

another term involving the source f . Both terms involve the source 

function s . 



Notes 

 

Let‘s begin by explaining where (2) comes from. Later we will 

actually prove the validity of the formula. (If a strictly mathematical 

proof is satisfactory to you, this paragraph and the next two can be 

skipped.) our explanation is an analogy. The simplest analogy is the 

ODE. 

     , 0 .
du

Au t f t u
dt

    

Where A is a constant. Using the integrating factor ,tAe   the solution is  

     
0

.
t s t AtAu t e e f s ds

    

A more elaborate analogy is the following. Let‘s suppose that   us an 

n-vector,  u t  is an n-vector function of time, and A is a fixed n n  

matrix. 

Then (3) is a coupled system of n linear ODEs. In case   0,f t   the 

solution of (3) is given as   u t   ,S t   where  S t  is the matrix 

  .tAS t e  So in case   0,f t   an integrating factor for (3) is  

  .tAS t e  So in case   0,f t   an integrating factor for (3) is  

  .tAS t e  Now we multiply (3) on the left by this integrating factor 

to get 

           .
d

S t u t S t Au t S t f t
dt

      
 

Integrating from 0 to t, we get 

       
0

.
t

S t u t S s f s ds     

Multiplying this by  S ,t  we end up with the solution formula 

       
0

.
t

u t S t S t s f s ds    

The first term in (5) represents the solution of the homogeneous 

equation, the second the effect of the source  .f t  For a single 

equation, of course, (5) reduces to (4). 
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Now let‘s return to the original diffusion problem (1). There is an 

analogy between (2) and (5) which we now explain. The solution of (1) 

will have two terms. The first one will be the solution of the 

homogeneous problem, already solved in Section 2.4, namely 

     , 9 .S x y t ydy t x  



   

 S ,x y t  is the source function given by the formula (2.4.7) Here we 

are using  t  to denote the source operator, which transforms any 

function   to the new function given by the integral in (6). 

(Remember: Operators transform functions into functions.) We can 

now guess what the whole solution to (1) must be. In analogy to 

formula (5), We guess that the solution of (1) is 

       
0

.
t

u t t t s f s ds      

Formula (7) is exactly the same as (2): 

 

The method we have just used to find formula (2) is the operator 

method. 

Proof of (2). All we have to do is verify that the function  ,u x t , 

which is defined by (2), in fact satisfies the PDE and IC (1). Since the 

solution of (1) is unique, we would then know that  ,u x t  is that 

unique solution. For simplicity, we may as well let 0,   since we 

understand the   term already.  

We first verify the PDE. Differentiating (2), assuming 0   and using 

the rule for differentiating integrals in Section A.3, we have  

   

   

   

0

0

, ,

, ,

lim , , ,

t

t

s t

u
S x y t s f y s dy ds

t t

S
x y t s f y s dy ds

t

S x y t s f y s dy













 
  

 


  



  

 

 



 

     

   

0

0

, , .

, , .

t

t

u x t S x y t y dy

S x y t s f y s dy ds
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Taking special care due to the singularity of  , t s 0.S x y at t s   

using the fact that  , t sS x y   satisfies the diffusion equation, we 

get 

   

   

2

20

0

, ,

lim , , .

tu S
k x y t s f y s dy ds

t x

S x y f y t dy









 
  

 

  

 



 

Pulling the spatial derivative outside the integral and using the initial 

condition satisfied by S,  

we get 

     

 

2

2 0

2

2

, , , t

, .

tu S
k S x y t s f y s dy ds f x

t x

u
k f x t

x





 
   

 


 



 
 

This identify is exactly the PDE (1). Second, we verify the initial 

condition. Letting 0,t   the first term in (2) tends to  x  because of 

the initial condition of S. the second term is an integral from 0 to 0. 

Therefore, 

     
0

00
lim , ... .
t

u x t x x 


    

This proves that (2) is the unique solution. 

Remembering that  ,S x t  is the Gaussian distribution , the formula 

(2) takes the explicit form 

     

 
   

 
2/4

0

0

, , ,

1
, .

4

k t s

t

t x y

u x t S x y t s f y s dy ds

e f y s dy ds
k t s







  



  




 

 
 

in the case that 0  . 

4.5 SOURCE ON A HALF-LINE 
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For inhomogeneous diffusion on the half-line we can use the method 

of reflection. 

Now consider the more complicated problem of a boundary source 

 h t  on the half-line; that is, 

 

   

   

, 0 , 0

0,

,0 .

t xxk f x t for x t

t h t

x x

 



 

       




 

We may use the following subtraction device to reduce (9) to a simpler 

problem. Let        V , , . ,x t x t h t ThenV x t   will satisfy 

   

 

     

, 0 , 0

0, 0

,0 h 0 .

t xxV kv f x t h t for x t

V t

V x x

        



 

 

To verify (10), just subtract! This new problem has a homogeneous 

boundary condition to which we can apply the method of reflection. 

Once we find V , we recover      , , .by x t V x t h t      

This simple subtraction device is often used to reduce one linear 

problem to another. 

The domain of independent variables  ,x t  in this case is a quarter-

plane with specified conditions on both of its half-lines.  

If they do not agree at the corner    . ., 0 0 ,i e if h     then the 

solution is discontinuous there (but continuous everywhere else). This 

is physically sensible.  

Think for instance, of suddenly at t 0  sticking a  hot iron bar into a 

cold bath. 

For the inhomogeneous Neumann problem on the half-line, 

 

   

   

, 0 , 0

0,

,0 .

t xxw kw f x t for x t

w t h t

w x x
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We would subtract off the function  .xh t That is, 

     , , .w x t w x t xh t   Differentiation implies that  0, 0.xw t   

Some of these problems are worked out in the exercise. 

EXERCISE 

1. Solve the inhomogeneous diffusion equation on the half-line with 

Dirichlet let boundary condition: 

   

     

, 0 , 0

0, 0 ,0

t xxu ku f x t x t

u t u x x

       

 
 

2. Using the method of reflection. 

Solve the completely inhomogeneous diffusion problem on the half-

line 

 

       

, 0 , 0

0, ,0 .

t xxk f x t for x t

t h t x x

 

  

       

 
 

By carrying out the subtraction method begun in the text. 

3. Solve the inhomogeneous Neumann diffusion problem on the half-

line 

 

By the subtraction method indicated in the text. 

4.6 WAVES WITH A SOURCE 
 

The purpose of this section is to solve 

 2 ,tt xxu c u f x t   

on the whole line, together with the usual initial conditions 

   

   

,0

,0t

u x x

u x x








 

       

0 0 , 0

0, ,0 .

t xx

x

w kw for x t

w t h t w x x
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Where  ,f x t  is a given function? For instance,  ,f x t  could be 

interpreted as external force acting on an infinitely long vibrating 

string. 

Because 
2 2

2

t x
L c    is linear operator, the solution will be the sum of 

three terms. One for , , .one for and one for f   The first two terms 

are given already in Section 2.1 and we must find the third term. We‘ll 

derive the following formula. 

Theorem 1:  The unique solution of (1),(2) is 

     
1 1 1

,
2 2 2

x cl

x cl
u x t x ct x ct f

c c
  



 
            

Where   is the characteristic triangle (see Figure 1). 

The double integral in (3) is equal to the iterated integral 

 
 

 

0
, .

t x c t s

x c t s
f y s dy ds

 

    

We will give three different derivations of this formula! But first, let‘s 

note what the formula says. It says that the effect of a force 

 ,f onu x t  is obtained  

 

by simply integrating f  over the past history of the point  ,x t  back 

to the initial time 0t  . This is yet another example of the causality 

principle. 

4.7 WELL-POSEDNESS 
 



Notes 

 

The well-posedness has three ingredients, as follows. Existence is 

clear, given that the formula (3) itself is an explicit solution. If   has a 

continuous second derivative,   has a continuous first derivative, and 

f is continuous, then the formula (3) yields a function u  with 

continuous second partials that satisfies the equation. Uniqueness 

means that there are no other solutions of (1),(2). This will follow from 

any one of the derivations given below. 

Third, we claim that the problem (1),(2) is stable in the sense of 

Section 1.5. The means that if the data  , , f  change a little, then u  

also changes only a little. To make this precise, we need a way to 

measure the ―nearness‖ of functions, that is, a metric or norm on 

function spaces. We will illustrate this concept using the uniform 

norms: 

 max
x

w w x
 


 

and 

 
,0

max , .
T x t T

w w x t
   


 

Here T  is fixed. Suppose that  1 ,u x t  is the solution with data 

      1 1 1, , ,x x f x t  and  2 ,u x t  is the solution with data 

      2 2 2, , ,x x f x t   (six given functions). We have the same 

formula (3) satisfied by 1u  and by 2u  except for the different data. We 

subtract the two formulas. We let 1 2.u u u   Since the area of   

equals 
2ct , we have from (3) the inequality 

  2

2

1 1
, max .max .2 .max .

2 2

max .max .max .
2

u x t ct f ct
c c

t
t f

 

 

  

  

 

2

1 2 1 2 1 2 1 2 .
2T T

T
u u T f f           
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So if 

 2

1 2 1 2 1 2 1 2, , , , , 1
T T

and f f is small u u T T                 

 

Provided that  21 .T T     Since   is arbitrarily small, this 

argument proves the well-posedness of the problem (1),(2) with 

respect to the uniform norm. 

PROOF OF THEOREM 1 

Method of Characteristic Coordinates We introduce the usual 

characteristic coordinates , ,x ct x ct     (see Figure 2).  

we have 

2 24 , .
2 2

tt xxLu u c u c u f
c



     
      

 
 

We integrate this equation with respect to  , leaving   as a constant. 

Thus 
2

1

4
u fd d

c

 

    
 

The lower limits this equation here are arbitrary: they correspond to 

constants of integration. The calculation is much easier to understand if 

we fix a point 0p  with coordinates 0 0, tx and  

0 0 0 0 0 0.x ct x ct      

 

          Figure 2  
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Figure 3 

We evaluate (5) at 0p   and make a particular choice of the lower 

limits. Thus 

 

is particular solution. As Figure 3 indicates,   now represents a 

variable going along a line segment to the base    of the triangle    

from the left-hand edge 0 ,   while   runs from the left-hand 

corner to the right-hand edge. Thus we have integrated over the whole 

triangle    . 

The iterated integral, however, is not exactly the double integral over  

  because the coordinate axes are not orthogonal. The original axes 

x and y are orthogonal, so we make a change of variables back to 

.x and t  This amounts to substituting back 

, t .
2 2

x
c

    
 

 

 

 
0 0

0

0 0

0

0 2

2

1
,

4 2 2

1
,

4 2 2

u p f d d
c c

f d d
c c
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Our charge of variable is a linear transformation, the Jacobian is just 

the determinant of its coefficient matrix: 

 

Thus 2 .d d Jdxdt cdxdt     Therefore, the rule for changing 

variables in a multiple integral (the Jacobian theorem) then gives 

   0 2

1
,

4
u P f x t J dx dt

c 
 

 

This is precisely Theorem 1. The formula can also be written as the 

iterated integral in x and t: 

   
 0 0 0

0
0 0

0

1
, ,

2

t x c t t

x
u x t f x t dx dt

c

 

  
 

Integrating first over the horizontal line segments in above Figure and 

the vertically. 

A variant of the method of characteristic coordinates is to write 1 as 

the system of two equations 

,t x t xu cu c f     
 

The first equation being the definition of , as in section 2.1 If we first 

solve the second equation, then , is a line integral of f over a 

characteristic line segment x ct constant. The first equation then 

1
det det 2 .

1

cx t
J c

c

x t
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gives  ,u x t by sweeping out these line segments over the 

characteristic triangle  . To carry out this variant is a little tricky, 

however, and we leave it as an exercise. 

 

Check your progress 

2.    
 0 0 0

0
0 0

0

1
Pr , ,

2

t x c t t

x
ovethat u x t f x t dx dt

c

 

    

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------- 

4.8 METHOD USING GREEN’S 

THEOREM  

 

In this method we integrate f  over the past history triangle  . Thus 

 2 .tt xxf dx dt u c u dx dt
 

      

But Green‘s theorem says that 

 x t
bdy

p Q dx dt pdt Qdx


       

for any functions  p and Q , where the line integral on the boundary is 

taken counterclockwise (see Section A.3). Thus we get 

 
0 2 3

2 .x t
L L L

f dx dt c u dt u dx
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This is the sum of three line integrals over straight line segments (see 

Figure 6). We evaluate each piece separately. On 

   0 , 0 ,0 ,tL dt and u x x   so that 

 
0 0

0 0 0

.
x ct

L x ct
x dx




    

On 

2

1 0 0, , 0, .x t x tL x ct x ct sothat dx cdt whence c u dt u dx cu dx cu dt cdu         

  

Thus 

   
1 1

0 0 0 0, .
L L

c du cu x t c x ct      

In the same way, 

   
2 2

0 0 0 0, .
L L

c du c x ct cu x t        

Adding these three results, we get 

       
0 0

0 0
0 0 0 0 0 02 , .

x ct

x ct
fdx dt cu x t c x ct x ct x dx  



 
           

Thus 

     

 
0 0

0 0

0 0 0 0 0 0

1 1
,

2 2

1
,

2

x ct

x ct

u x t fdx dt x ct x ct
c

x dx
c

 









      



 


 

Which is the same as before. 

Operation Method: This is how we solve the diffusion 

equation with a source. Let‘s try it out on the wave equation. The ODE 

analog is the equation, 

       
2

2

2
, 0 , 0 .

d u du
A u t f t u

dt dt
    

 

We could think of 
2A  as a positive constant (or even a positive square 

matrix.) The solution of (13) is  

         
0

,
t

u t S t S t S t s f s ds      



Notes 

 

Where 

   1 sin cos .S t A tA and S t tA  
 

The key to understanding formula (14) is that  S t   is the solution of 

problem (13) in the case that 0 0.and f    

Let‘s return to the PDE 

         2 , ,0 ,0 .tt xx tu c u f x t u x x u x x    
 

The basic operator ought to be given by the  term. That is, 

     
1

, ,
2

x ct

x ct
t y dy x t

c
   




 

 

Where  ,x t  solves        2 0, ,0 0, ,0 .tt xx tc x x x t          

is the source operator. By (14) we would expect the  term to be 

   / .t t    In fact, 

   

     

1

2

1
,

2

x ct

x ct
t y dy

t t c

cgf x ct c x ct
c

  







 


 

      



 

In agreement with our old formula (2.1.8)! So we must be on the right 

track.  

Let‘s now take the f  term; that is, 0.    By analogy with the last 

term in (14), the solution ought to be 

     
0

.
t

u t t s f s ds   

That is, using (17), 

   
 

 

0

1 1
, , .

2 2

t x c t s

x c t s
u x t f y s dy ds f dx dt

c c

 

  

 
  

 
   

 

This is once again the same result! 

The moral of the operator method is that if you can solve the 

homogeneous equation, you can also solve the inhomogeneous 

equation. This is sometimes known as Duhamel‘s principle. 
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SOURCE ON A HALF-LINE 

The solution of the general inhomogeneous problem on a half-line 

 

       

   

2: , 0

: ,0 ,0

: 0,

tt xx

t

DE c f x t in x

IC x x x x

BC t h t

 

   



    

 


 

is the sum of four terms, one for each data function 

, , , . 0,f and h For x ct     the solution  has precisely the same form 

as in (3), with the backward triangle   as the domain of dependence. 

For 0 ,x ct   however, it is given by 

 
1

,
2 D

x
x t term term h t f

c c
  

 
     

 
 

 

Where xt
c

  is the reflection point and D is the shaded region in 

Figure 3.2.2. The only caveat is that the given conditions had better 

coincide at the origin. That is, we require that 

       0 0 0 0 .h and h     If this were not assumed, there would 

be a singularity on the characteristic line emanating from the corner. 

Let‘s derive the boundary term   .xh t for x ct
c

   To accomplish 

this, it is convenient to assume that 0.f     We shall derive the 

solution from scratch using the fact that  ,x t  must take the form 

     , .x t j x ct g x ct      From the initial conditions  0 ,    

we find that     0 0.j s g s for s    From the boundary condition 

we have      0, 0.h t t g ct for t    Thus

    0.sg s h for s
c

   

Therefore, if 

   , 0, , 0x ct t we have x t h x ct        .xc h t
c

    

FINITE INTERVAL 
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For a finite interval  0, l  with inhomogeneous boundary conditions 

       0, , , t ,t h t l k t    we get the whole series of terms 

 
2 2

, t ...

1 3
...

x x l x l
l h t h t h t

c c c

x x l x l
k t k t k t

c c c


      

           
     

       
           

       

EXERCISE: 

1. Solve 
   2 , ,0 0, ,0 0.tt xx tu c u xt u x u x   

 

2. Solve 
   2 , ,0 0, ,0 0.ax

tt xx tu c u e u x u x   
 

3. Solve 
   2 , ,0 sin , ,0 1 .tt xx tu c u Cosx u x x u x x    

 

4. Show that the solution of the inhomogeneous wave equation 

       2 , ,0 , ,0 .tt xx tu c u f and u x x u x x      

Is the sum of three terms, one each for , ,f and  . 

5. Let  ,f x t  be any function and let    1, ,
2

u x t f where
c 

    

is the triangle of dependence. Verify directly by differentiation that 

   2 ,0 ,0 0tt xx tu c u f and u x u x     

(Hint: Begin by writing the formula as the iterated integral 

   
1

, ,
2

x ct cs

x ct cs
u x t f y s dy ds

c

 

 
    

6. Derive the formula for the inhomogeneous wave equation in yet 

another way. 

Write it as the system 

, .t x t xu cu c f     
 

7. Solve the first equation for u  in terms of   as 

   
0

, , .
t

u x t x ct cs s ds    

Similarly, solve the second equation for    in terms of f . 

8. Let A be a positive-definite n n matrix. Let 
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2 2 1

0

1
.

2 1 !

m m m

m

A t
S t

m









  

9. Show that this series of matrices converges uniformly for bounded 

t and its sum  S t  solves the problem 

       2 0, 0 0, 0 ,S t A S t S S I whereI      is the identify 

matrix. Therefore, it makes sense to denote   1 sinS t as A tA and to 

denote its derivative    cos .S t as tA  

10. Show that the source operator for the wave equation solves the 

problem 

   2 0, 0 0, 0 ,tt xx tc I      
 

Where I  is the identify operator. 

11. Use any method to show that 
 

1
2 D

u f
c

    solves the 

inhomogeneous wave equation on the half-line with zero initial 

boundary data, where D is the domain of dependence for the half-

line. 

12. Show by direct substitution that 

     , , 0xu x t h t for x ct and u x t for x ct
c

      solves the 

wave equation on the half-line  0,  with zero initial data and 

boundary condition 
   0, .u t h t

 

13. Derive the solution of the fully inhomogeneous wave equation on 

the half-line 

 

       

   

2 , 0

,0 , ,0

0, ,

tt xx

t

c f x t in x

x x x x

t h t

 

   



    

 

 
 

by means of the method using Green‘s theorem. (Hint: 

Integrate over the domain of dependence.) 

14. Solve     
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2

2

0 ,

0, , ,0 , u ,0 0.

tt xx

t

u c u for x

u t t u x x x

   

  

 the homogeneous wave 

equation on the half-line  0, with zero initial data and with the 

Neumann boundary condition    0, .xu t k t  Use any method you 

wish. 

15. Derive the solution of the wave equation in a finite interval with 

inhomogeneous boundary conditions 

       0, , , , 0.t h t l t k t and with f         

DIFFUSION REVISTED 

In this section we make a careful mathematical analysis of the solution 

of the diffusion equation that we found in previous chapter. (On the 

other hand, the formula for the solution of the wave equation is so 

much simpler that it doesn‘t require a special justification.) 

 The solution formula for the diffusion equation is an example 

of a convolution, the convolution of   with S (at a fixed t). It is 

         , , , ,u x t S x y t y dy S z t x z dz 
 

 
      

Where  
2 /4

1,
4 .z kt

S z t
kte 

  If we introduce the variable 

,
zp

kt
  it takes the equivalent form 

   
2/41

, .
4

pu x t e x p kt dp






 

 

Now we are prepared to state a precise theorem. 

Theorem1. Let  x  be a bounded continuous function for 

.x     Then the formula (2) defines an infinitely differentiable 

function  , ,u x t for x      which satisfies the equation 

   0
lim ,t xx t

u ku and u x t x   for each x . 

 Proof:  The integral converges easily because 
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2 /41

, max max .
4

pu x t e dp 






 

 

(This inequality is related to the maximum principle.) Thus the integral 

converges uniformly and absolutely. Let us show that u
x




 exists. It 

equals     ,S x y t y dy
x

 
  provided that this  new integral also 

converges absolutely. Now 

       

 

 

2

2

2

/4

/4

/4

1
,

24

max ,

x y kt

p

p

S x y
x y t y dy e y dy

x ktkt

c
pe x p kt

t

c
p e dp

t

 






   

 











 
  



 



 




 

Where c  is a constant. The last integral is finite. So this integral also 

converges uniformly and absolutely. Therefore, x
uu

x



 exists and 

is given by this formula. All derivatives of all orders 
 , , , ,...t xt xx ttu u u u

 

work the same way because each differentiation brings down a power 

of p  so that we end up with convergent integrals like 

 
2/4

. ,n pp e dp sou x t

  is differentiable to all orders. Since  ,S x t  

satisfies the diffusion equation for 0,t   so does  ,u x t . 

It remains to prove the initial condition. It has to be understood in a 

limiting sense because the formula itself has  because  the formula 

itself has meaning only for 0.t   Because the integral of 1,S is we 

have 

         

   
2 /4

, ,

1
.

4

p

u x t x S x y t y x dy

e x p kt x dp

  

 











     

  
 




 

For fixed x  we must show that this tends to zero as 0.t   The idea is 

that for p t  small, the continuity of  make the integral small; while 

for p t not small, p is large and the exponential factor is small. 
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 To carry out this idea, let 0. 0Let    be so small that 

   max .
2y x

y x


 
 


   

This can be done because   is continuous at x . We break up the 

integral into the part where p
kt

  and the part where 

.p
kt

  The first part is  

   
2 /4

/

1
. max

4

p

p kt y x
e y x

 
 





  

 
  

 
   

1. .
2 2

 
 

 

The second part is  

 
2 /4

/ /

1
.2 max .

24

p

p kt p kt
e dp

 






 


    

By choosing t sufficiently small, since the integral 
2 /4pe dp




  

converges and   is fixed. (That is, the ―tails‖)
2 /4p

p N
e dp

 are as 

we wish if N
kt


 is large enough.) Therefore, 

    
1 1

,
2 2

u x t x      

Provided that t is small enough. This means exactly that 

   ,u x t x as 0.t   

Corollary:  The solution has all derivatives of all orders for 

0.t  even if  is not differentiable. We can say therefore that all 

solutions become smooth as soon as diffusion takes effect. There 

are no singularities, in sharp contrast to the wave equation. 

Proof : We use formula      , ,u x t s x y t y dy



  

 Together with the rule for differentiation under an integral sign, 

Theorem 2 in section A.3. 
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Piecewise Continuous Initial Data: Notice that the continuity 

of  x  was used in only one part of the proof. With an appropriate 

change we can allow  x to have a jump discontinuity. [Consider, for 

instance, the initial data for  , .Q x t ] 

A function  x  is said to have a jump at 0x if both the limit of  x

as 0x x from the right exists [denoted  0x  ] exists but these two 

limits are not equal. A function is called piecewise continuous if in 

each finite interval it has only a finite number of jumps and it is 

continuous at all other points. This concept is discussed in more detail 

in Section 5.2. 

Theorem 2 : Let  x be a bounded function that is piecewise 

continuous. Then (1) is an infinitely differentiable solution for 0t 

and  

     
0

1
lim ,

2x
u x t x x 


       

 For all x. At every point of continuity this limit equals  .x  

Proof : The idea is the same as before. The only difference is to split 

the integrals into 0 0.p and p  We need to show that 

   
2 /4

0

1 1
.

24

pe x kt p dp x 



      

The details are left as an exercise. 

EXERCISE: 

1. Prove that if  is any piecewise continuous function, then  

   
2 /4

0

1 1
as t 0.

24

pe x kt p dp x 



       

2. Use Exercise 1 to prove Theorem 2. 

 

Check your progress 

3. Explain the method using Green‘s theorem. 

----------------------------------------------------------------------------

---------------------------------------------------------------------------- 

4. Prove the theorem Let  x  be a bounded continuous 
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function for .x     Then the formula (2) defines an 

infinitely differentiable function  , ,u x t for x      which 

satisfies the equation    0
lim ,t xx t

u ku and u x t x   for 

each x . 

---------------------------------------------------------------------------

--------------------------------------------------------------------------- 

4.9 LET US SUM UP 
 

In this unit we have discussed about Diffusion on the half-line, 

Reflection of waves, Diffusion 

with a source, Source on a half-line, Waves with a source, Well-

posedness, Method using 

Green‘s theorem and The reflection method. The odd extension of both 

of the initial functions to the whole line. Homogeneous diffusion 

equation on the whole line. Use the method of reflection for 

inhomogeneous diffusion on the half-line. The solution formula for the 

diffusion equation. Piecewise continuous initial data. 

4.10 KEY WORDS 
 

1. Single point of reflection at one end of a semi-infinite line. 

2. The odd extension of both of the initial functions to the whole 

line. 

3. In homogeneous diffusion equation on the whole line 

4. Our charge of variable is a linear transformation; the Jacobian 

is just the determinant of its coefficient matrix: 

5. Method using Green‘s Theorem In this method we integrate f  

over the past history triangle  . Thus 

 2 .tt xxf dx dt u c u dx dt
 

      

6. Source on a half line 

7. Waves with a source 



Notes  

115 

4.11 QUESTIONS FOR REVIEW 
 

1. Discuss diffusion on the half-line 

2. Discuss diffusion with a source 

3. Discuss reflection of waves 

4. Discuss source on a half line 

5. Discuss method using Green‘s Theorem 

4.12 SUGGESTED READINGS AND 

REFERENCES 
 

1. S. L. Ross, Differential Equations, 3rd Edn., Wiley India, 1984. 

2. DiBenedetto, Partial Differential Equations, Birkhaüser, 1995.  

3. L.C. Evans, Partial Differential Equations, Graduate Studies in 

Mathematics, Vol. 19, American Mathematical Society, 1998. 

4. I.N. Sneddon Elements of Partial Differential Equations 

McGrawHill 1986. 

5. R. Churchil & J. Brown, Fourier Series & Boundary Value 

Problems. 

6. R.C. McOwen , Partial Differential Equations  (Pearson Edu.) 

2003.   

7. Duchateau and D.W. Zachmann, ―Partial Differential Equations,‖ 

Schaum, Outline Series, McGraw hill Series.  

8. Partial Differential Equations, -Walter A.Strauss 

9. Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 

4.13 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 4.4 

2. See section 4.8 

3. See section 4.9 

4. See section 4.9 
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UNIT-5 BOUNDARY PROBLEMS 
 

STRUTURE 

5.0 Objective 

5.1 Introduction 

5.2 Separation of variables, the Dirichlet condition 

5.3 The Neumann condition 

5.4 The Robin condition 

5.5 Positive eigen values 

5.6 Zero eigen value 

5.7 Let us sum up 

5.8 Key words 

5.9 Questions for review 

5.10 Answers to check your progress 

5.11 Suggestive readings and references 

5.0 OBJECTIVE 
 

After studying this unit we will learn about  

separation of variables, the Dirichlet condition, 

The Neumann condition,  

The Robin condition, Positive eigen values, Zero eigen values. 

 

5.1 INTRODUCTION 
 

In this chapter we finally come to the physically realistic case of a 

finite interval 0 .x l   The methods we introduce will frequently 

be used in the rest  of this book. 

5.2 SEPARATION OF VARIABLES, THE 

DIRICHLET CONDITION 
 

We first consider the homogeneous Dirichlet conditions for the wave 

equation: 
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2 0 (1)

0, 0 , (2)

tt xxu c u for x l

u t u l t

     

    
 

With some initial conditions 

       0, x,0 .tu t x u x   --------(3) 

The method we shall use consists is building up the general solution as 

a linear combination of special ones that are easy to find. 

A separated solution is a solution of (1) and (2) of the form 

     , .u x t X x T t ----------(4) 

It is important to distinguish between the independent variable written 

as a lower case letter and the function written as a capital letter. 

Our first goal is to look for as many separated solutions as possible. 

Plugging the form (4) into the wave equation (1), we get 

       2X x T t c X x t t   

Or, dividing by 
2 ,c XT  

2
.

T X

c T X


 
     

This defines a quantity  , which must be a constant, (Proof:

0 0,and so
x t

    
 

 is constant.  

Alternatively, we can argue that   doesn‘t depend on x  because of 

the first expression and doesn‘t depend on t  because of the second 

expression, so that it doesn‘t depend on any variable. 

We will show at the end of this section that 0.    

So let 
2 , 0.where     (This the equation above are a pair of 

separate (!) ordinary differential equations for     :X x and T t  

2 2 20 0.X X and T c T      --------(5) 

These ODEs are easy to solve. The solutions have the form 
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cos sin (6)

cos sin , (7)

X x C x D x

T t A ct B ct

 

 

    

   
 

Where A, B, C, and D are constants. 

 The second step is to impose the boundary conditions (2) on the 

separated solution. They simply require that    0 0 1 .X X   

   0 0 0 Dsin .X C and X l l     

Surely we are not interested in the obvious solution 0.C D   So we 

must have ,l n   a root of the sine function. That is, 

   
2

, sin 1,2,3,...n n

n n x
X x n

l l

 


 
   

 
…….(8) 

are distinct solutions. Each sine function may be multiplied by an 

arbitrary constant. 

 Therefore, there are an infinite (!) number of separated solution 

of (1) and (2), one for each n . They are 

 , cos sin sinn n n

n n ct n x
u x t A B

l l l

   
  

 
 

(n=1,2,3,…), where n nA and B  are arbitrary constants. The sum of 

solutions is again a solution, so any finite sum. 

 , cos sin sinn n

n

n ct n ct n x
u x t A B

l l l

   
  

 
 -------(9) 

is also a solution of (1) and (2). 

Formula (9) solves (3) as well as (1) and (2), provided that  

 

 

sin (10)

sin . (11)

n

n

n

n

n x
x A

l

and

n c n x
x B

l l




 


   

   





 

Thus for any initial data of this form, the problem (1), (2), and (3) has 

a simple explicit solution. 
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But such data (10) and (11) clearly are very special. So let‘s try 

(following Fourier in 1827) to take infinite sums. Then we ask what 

kind of data pairs    ,x x   can be expanded as in (10), (11) for 

some choice of coefficients , ?n nA    

This question was the source of great disputes for half a century 

around 1800, but the final result of the disputes was very simple: 

Practically any (!) function  x  on the interval  0, l  can be 

expanded in an infinite series (10).  

It will have to involve technical questions of convergence and 

differentiability of infinite series like (9). The series in (10) is called a 

Fourier since series on  0, l . 

But for the time being let‘s not worry about these mathematical points. 

Let‘s just forge ahead to see what their implications are. 

First of all, (11) is the same kind of series for  x  as (10) is for 

 x . What we‘ve shown is simply that if (10), (11) are true, then the 

infinite series (9) ought to be the solution of the whole problem (1), 

(2), (3). 

A sketch of the first few functions    2sin ,sin ,...x x
l l

   is shown 

in Figure 1. The functions    cos sin ,...n ct n xand
l l

   which 

describe the behavior in time have a similar form. The coefficients of 

t  inside the sines and cosines, namely n ct
l

 , are called the 

frequencies. (In some texts, the frequency is defined as 
2 .

nc
l  
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Figure 1 

If we return to the violin string that originally led us to the problem (1), 

(2), (3), we find that the frequencies are 

1,2,3,...
n T

for n
t p


 -------(12) 

The ―fundamental‖ note of the string is the smallest of these,

 
.T

t p

 The ―overtones‖ are exactly the double, the triple, and so 

on, of the fundamental! The discovery by Euler in 1749 that the 

musical notes have such a simple mathematical description created a 

sensation. It took over half a century to resolve the ensuing 

controversy over the relationship between the infinite series (9) and 'd  

Alembert‘s solution in Section 2.1. 

The analogous problem for diffusion is 

 

   

   

: 0 , (13)

: 0, , 0 (14)

: ,0 (15)

t xxDE u ku l o t

BC u t u l t

IC u x x

       

    

   

 

To solve it, we separate the variables    u T t X x  as before. This 

time we get  

tan .
T X

cons t
kT X


 

     

Therefore,  T t  satisfies the equation ,T kT   whose solution is 

  .
kteT t A



  Furthermore, 

   0 0 0.X X in X l with x X l      -----(16) 

This is precisely the same problem for  X x  as before and so has the 

same solutions. Because of the form of   ,T t  

 
 

2

1

, sin
n kt

l
n

n

n x
u x t A e

l

 




  .-----(17) 
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is the solution of (13) - (15) provided that 

 
1

sin .n

n

n x
x A

l








  ------(18) 

Once again, our solution is expressible for each t  as a Fourier sine 

series in x  provided that the initial data are. 

For example, consider the diffusion of a substance in a tube of length 

.l  Each end of the tube opens up into a very large empty vessel. So the 

concentration  ,u x t  at each end is essentially zero. Given an initial 

concentration  x  in the tube, the concentration at all later times is 

given by formula (17). Notice that as t  , each term in (17) goes 

zero. Thus the substance gradually empties out into the two vessels and 

less and less remains in the tube. 

The numbers  
2

n
n

l
   are called eigenvalues and  the functions 

   sinn
nX x

l
 are called eigen functions. The reason for this 

terminology is as follows. They satisfy the conditions 

   
2

2
, 0 0.

d
X X X X l

dx
    ------(19) 

The is an ODE with conditions at two points. Let A denote the 

operator 
2

2 ,d
dx

  which acts on the functions that satisfy the 

Dirichlet boundary conditions. The differential equation has the form 

.AX X  An eigen function is a solution 0X   of this equation and 

an eigenvalue is a number   for which there exists a solution 0X  . 

This situation is analogous to the more familiar case of an N N  

matrix A. A vector X that satisfies 0AX X with X   is called an 

eigenvector and    is called an eigenvalue. For an N N  matrix there 

are at most N  eigenvalues. But for the differential operator that we are 

interested in, there are an infinite number of eighn values 

2 2 2

2 2 2
4 9, , ,....

l l l
    Thus you might say that we are dealing with 

infinite-dimensional linear algebra! 
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In physics and engineering the engenfunctions are called normal 

modes because they are the natural shapes of solutions that persist for 

all time. 

Why are all the eigenvalues of this problem positive? We assumed this 

in the discussion above, but let‘s prove it. First, could 0   be an 

eigenvalue? This would mean that 0,X   so that   .X x C Dx   But 

   0 0X X l   implies that 0,C D   so that   0.X x   

Therefore, zero is not an eigenvalue. 

Next, could there be negative eigenvalues? If 0,   let‘s write it as 

2 2. ,Then X X      so that   cosh sinh .X x C x D l   Hence 

0D   since sinh 0.l   

  ,x xX x Ce De    

Where we are using the complex exponential function. 

 The boundary conditions yield  0 0 0 .lX C D and Ce     

Therefore 1.lCe   By a well-known property of the complex 

exponential function, this implies that    Re 0 2 2and lIM n     

for some integer n . Hence 
2 2

2
2 ,n i nand

l l
       which is 

real and positive . Thus the only eigenvalues   of our problem (16) 

are positive numbers; in fact, they are    
2 2

2, ,....
l l

   

EXERCISE: 

1.  (a) Use the Fourier expansion to explain why the note 

produced by a violin string rises sharply by one octave when 

the string is clamped exactly at its midpoint. 

 (b) Explain why the note rises when the string is tightened. 

2.  Consider a metal rod  0 ,x l   insulated along its sides but 

not at its ends, which is initially at temperature=0. Suddenly 

both ends are plunged into a bath of temperature=0. Wrote the 
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formula for the temperature  ,u x t at later times. In this 

problem, assume the infinite series expansion  

4 1 3 1 5
sin sin sin ...

3 5

x x x
t

l l l

  



 
    

 
 

3.  A quantum-mechanical particle on the line with an infinite 

potential outside the interval  0, l (―particle in a box‖) is given 

by Schtrodinger‘s equation t xxu iu on    0, l  with Dirichlet 

conditions at the ends. Separate the variable and use (8) to find 

its representation as a series. 

4.  Consider eaves in a resistant medium that satisfy the problem 

       

2 0

0

,0 ,0 ,

tt xx t

t

u c u u for x l

u at bothends

u x x u x x



 

   



 

 

Where   is a constant, 20 .c
l

 
 Write down the series 

expansion of the solution.
 

5. Do the same for 
2 4 .c c

t l
  

 

6.  
Separate the variables for the equation 1 .x l    with the 

boundary conditions    0, , 0.u t u t   Show that there are 

an infinite number of solutions that satisfy the initial condition

 x, 0u t  . So uniqueness is false for this equation. 

Check your progress 

Explain about the Dirichlet conditions for the wave equation 

-------------------------------------------------------------------------------------

--------------------------------------------------------------------------- 

5.3 THE NEUMANN CONDITION 
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The same method works for both the Neumann and Robin boundary 

conditions (BCs). In the former case, (4.1.2) is replaced by 

   0, , 0.x xu t u l t   then the eigen functions are the solutions  X x  

of    , 0 0,X X X X l      --------(1) 

Other than the trivial solution   0.X x   

As before, let‘s first search for the positive eigenvalues 

   2 0. 4.1.6 , cos sin ,Asin x x C x D x        so that 

  sin cos .X x C x D x      
 

The boundary conditions (1) mean first that  0 0 ,X D   so that 

0,D  and second that  

 0 sin .X l C l     

Since we don‘t want 0,C   we must have sin 0.l   Thus 

2 3, , ,....
l l l

     Therefore, we have the  

   

2 2
2

: , , (2)

_
: cos 1,2,... (3)n

Eligenvalues
l l

n x
Eigenfunctions X x n

l

 



   
     

   

    

 

Next let‘s check whether zero is an eigenvalue. Set 0   in the ODE 

(1).Then 0X   . So that     .X x C Dx and X x D    The 

Neumann boundary conditions are both satisfied if 0.D C  can be any 

number. Therefore,  0   is an eigenvalue, and any constant function 

is its eigenfunction. 

If 0   or if   is complex (nonreal), it can be shown directly, as in 

the Dirichlet case, that there is no eigenfunction. (Another proof will 

be given in Section 5.3.) Therefore, the list of all the eigenvalues is 

2

0,1,2,3,...n

n
for n

l




 
  

 
-------(4) 

Note than 0n  is included among them! 
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So, for instance, the diffusion equation with the Neumann BCs has the 

solution 

 
 

2

0

1
, cos .

2

n kt
l

n

n l

n x
u x t A A e

l

 




    ------(5) 

This solution requires the initial data to have the ―Fourier cosine 

expansion‖ 

  0

1
cos .

2
n

n l

n x
x A A

l








  --------(6) 

All the coefficients 0 1 2, , ,....A A A are just constants. The first term in (5) 

and (6), which comes from the eigenvalue 0,   is written separately 

in the form 0

1

2
A  just for later convenience. (The reader is asked to 

bear with this ridiculous factor 
1

2
 , when its convenience will become 

apparent.) 

What is the behavior of  , ?u x t as t    Since all but the first term in 

(5) contains an exponentially decaying factor, the solution decays quite 

fast to the first term 0

1
,

2
A  which is just a constant. Since these 

boundary conditions correspond to insulation at both ends, this agrees 

perfectly with our intuition of Section 2.5 that the solution ―spreads 

out.‖ This is the eventual behavior if we wait long enough. (To 

actually prove that the limit as t   is given term by term in (5) 

requires the use of one of the convergence theorems in Section A.2. 

We omit this verification here.) 

Consider now the wave equation with the Neumann BCs. The 

eigenvalue 0   then leads to  x x   constant and to the differential 

equation    2 0,T t c T t    which has the solution   .T t A Bt   

Therefore, the wave equation with Neumann BCs has the solutions 
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  0 0

1

1 1
,

2 2

cos sin cos .n n

n

u x t A B t

n ct n ct n x
A B

l l l

  



 

 
  

 


---------(7) 

(Again, the factor 
1

2
 will be justified later.) Then the initial data must 

satisfy 

 

 

0

1

0

1

1
cos (8)

2

1
cos (9)

2

n

n

n

n

n x
x A A

l

and

n c n x
x B B

l l




 










    

    





 

Equation (9) comes from first differentiating (7) with respect to t  

and then setting 0.t   

A ―mixed: boundary condition would be Dirichlet at one end and 

Neumann at the other. For instance, in case the BCs are 

   0, , 0,xu t u l t   the eigenvalue problem is 

   0 0.X x X x l     ---------(10) 

The eigenvalues then turn out to be  

2
2

2

1

2
n

l
 

 
 

 and the eigen 

function  

2
1

sin 0,1,2,...
2

xn for n
l


  

   
   

 (see Exercises 1 and 2). 

For a discussion of boundary conditions in the context of musical 

instruments, see  .HJ  

 For another example, consider the Schrodiner equation t xxu iu

in  0, l  with the Neumann    0, , 0x xBCsu t u l t  and initial 

condition    ,0 .u x x  

tan ,
T X

cons t
iT x


 

     

So that   i tT t e   and  X x  satisfies exactly the same problem (1) 

as before. Therefore, the solution is 
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2

0

1

1
, cos .

2

ni t
l

n

n

n x
u x t A A e

l

 




    

The initial condition requires the cosine expansion (6). 

EXERCISE  

1. Solve the diffusion problem 0, ,t xxu ku in x l   with the mixed 

boundary conditions    0, , 0.xu t u l t   

2. Consider the equation 2 0 ,tt xxu c u for x l    with the boundary 

conditions    0, 0, , 0x xu t u l t   (Neumann at the left, Dirichlet at 

the right). 

(a) Show that the eigen functions are 
1

cos .
2

xn
l

  
  

  
 

(b) Write the series expansion for a solution  u , .x t  

3. Consider diffusion inside an enclosed circular tube. Let its length 

(circumference) be 2l . Let x  denote the arc length parameter where 

1 .x l    Then the concentration of the diffusing substance satisfies 

       , , , , .

t xx

x x

u ku for l x l

u l t u l t and u l t u l t

   

   
 

These are called periodic boundary conditions. 

(a) Show that the eigenvalues are  
2

0,1,2,3,...n for n
l

    

(b) Show that the concentration is 

 
2 2 2/

0

1

1
, cos sin .

2

n kt l

n n

n

n x n x
u x t A A B e

l l

 




 
   

 
  

5.4 THE ROBIN CONDITION              

 

We continue the method of separation of variables for the case of the 

Robin condition. The Robin condition means that we are solving 

X x   with the boundary conditions 

0

1

0 0 (1)

0 (2)

X a X atx

X a X atx l

      

      
 

The two constants 0 1a and a  should be considered as given. 
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The physical reason they are written with opposite signs is that they 

correspond to radiation of energy if 0 1a and a  are positive, absorption 

of energy if 0 1a and a  are negative, and insulation if 0 1 0a a  . This 

is the interpretation for a heat problem: See the discussion section 1.4 

or Exercise 2.3.8. For the case of the vibrating string, the 

interpretation is that the string shares its energy with the endpoints if 

0 1a anda are positive, whereas the string gains some energy from the 

endpoints if 0 1a anda  are negative:  

The mathematical reason for writing the constants in this way is that 

the unit outward normal n  for the interval 0 x l   points to the left 

at  0 1x n    and to the right at  1 .x l n    Therefore, we 

expect that the nature of the eigenfunctions might depend on the signs 

of the  two constants in opposite ways. 

Check your progress 

1. Explain the method of separation of variables for the case of 

the Robin condition. 

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------ 

5.5 POSITIVE EIGEN VALUES 
 

Our task now is to solve the ODE X X   with the boundary 

conditions (1), (2). First let‘s look for the positive eigenvalues 

2 0.    

As usual, the solution of the ODE is 

  cos sinX x C x D x   ------(3) 

So that 

       cos sin .X x aX x D aC x C aD x         
 

At the left end x 0  we require that 
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   0 00 0 0 .X a X D a C    ------(4) 

So we can solve for D  in terms of C . At the right end x l  we 

require that 

   0 cos sin .l lBD a C l C a D l       -----(5)
 

Messy as they may look, equations (4) and (5) are easily solved since 

thry are equivalent to the matrix equation 

0a 

cos sin cos a sinl l la l l l      
C

D 0

0
=

------(6) 

Therefore, substituting for D, we have 

  0
00 cos sin .l

l

a a
a C a c l C l  



 
     

 
-------(7) 

We don‘t want the trivial solution 0.C   We divide by cosC l  and 

multiply by   to get 

   2

0 1 0 1tan .a a l a a     --------(8) 

Any root 0   of this ―algebraic‖ equation would give us an eigenvalue 

2.   

What would be the corresponding eigenfunction? It would be the 

above  X x  with the required relation between C and D , namely, 

  0cos sin
a

X x C x x 


 
  

 
-------(9) 

      For any 0C  . By the way, because we divided by cos l , there is 

the exceptional case when cos 0;l   it would mean by (7) that 

0 .la a   

Our next task is to solve (8) for  . This is not so easy, as there is no 

simple formula. One way is to calculate the roots numerically, say by 

Newton‘s method.  

Another way is by graphical analysis, which, instead of precise 

numerical values, will provide a lot of qualitative information.  
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This is what we‘ll do. It‘s here where the nature of 0 la and a  come 

into play. Let us rewrite the eigenvalue equation (8) as 

 0

2

0

tan .
l

l

a a
l

a a










------(10) 

Our method is to sketch the graphs of the tangent function y tan l  

and the rational function 
 

 
0

2

0

l

l

a a
y

a a









 as function of 

0   and to find their points of intersection. What the rational 

function looks like depends on the constants 0 la and a . 

Case 1 In Figure 1 is pictured the case of radiation at both ends :

0 0a   and 0.la    

Each of the points of intersection ( 0)for   provides an eigenvalue 

2.n n   The results depend very much on the 0 la and a . 

 The exceptional situation mentioned above, when 

0cos 0 ,ll and a a   will occur when the graphs of the tangent 

function and the rational function ―intersect at infinity.‖  

No matter what they are, as long as they are both positive, the graph 

clearly shows that 

   
2 2

22

2 2
1 0,1,2,3,... .nn n n

l l

 
    -----(11) 

Furthermore, 

lim 0,n
n

n
l





 

--------(12) 

Which means that the larger eigenvalues get relatively closer to 

2 2

2
n

l
 (see Exercise 19). You may compare this to the case 

0 0,la a   the Neumann problem, where they are all exactly equal to 

2 2

2
n

l
 . 

Case 2 the case of absorption at 0x   and radiation at x l , but more 

radiation than absorption, is given by the conditions 
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0 00, 0, 0.l la a a a    -----(13) 

 

                                                   Figure 1 

Then the graph looks like Figure 2 or 3, depending on the relative sizes of 

0 .la and a  Once again we see that (11) and (12) hold, except that in 

Figure 2 there is no eigenvalue 0  in the interval  2

20, .
l

  

 There is an eigenvalue in the interval  2

20, .
l

  only if the rational 

curve crosses the first branch of the tangent curve. Since the rational 

curve has only a single maximum, this crossing can happen only if the 

slope of the rational curve is greater than the slope of the tangent 

curve at the origin. Let‘s 

 

 

Figure 2 
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Figure-3 

Calculate these two slopes. A direct calculation shows that the slope 

dy
d

 of the rational curve at the origin is  

00

0 0

0
ll

l l

a aa a

a a a a


 


 

Because of (13). On the other hand, the slope of the tangent curve 

tany l  at the origin is l  2sec 0 .l l  thus we reach the following 

conclusion. In case  

0 0l la a a a l   ------(14) 

(Which means ―much more radiation than absorption‖), the rational curve 

will start out at the origin with a greater slope than the tangent curve 

and the two graphs must intersect at a point in the interval  0, .
2l

  

therefore, we conclude that in Case 2 there is an eigenvalue 

 
2

00
2l

   if and only if (14) holds. 

5.6 ZERO EIGEN VALUE 
 

In Exercise 2 it shown that there is a zero eigenvalue if and only if 

0 0 .l la a a a l   -----------(15) 

Notice that (15) can happen only if 0 la or a  is negative and the 

interval has exactly a certain length or else 0 0.la a   

NEGATIVE EIGENVALUE 

Now let‘s investigate the possibility of a negative eigenvalue. This is 

a very important question; see the discussion at the end of this section. 
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To avoid dealing with imaginary numbers, we set 

2 0     

And write the solution of the differential equation as 

  cosh sinh .X x C x D x    

(As alternative form, which we used at the end of section 5.1, is 

.x xAe Be  ) The boundary conditions, much as before , lead to the 

eigenvalue equation 

 0

2

0

tanh .
l

l

a a
l

a a







 


--------(16) 

(Verify it!) So we look for intersections of these two graphs [on the 

two sides of (16)] for 0.   Any such point of intersection would 

provide a negative eigenvalue 
2    and a corresponding 

eigenfunction 

  0cosh sinh .
a

X x x x 


  ------(17) 

Several different cases are illustrated in Figure 4. Thus in Case 1, of 

radiation at both ends, when 
0 la and a  are both positive, there is no 

intersection and so no negative eigenvalue. 

 Case 2, the situation with more radiation than absorption 

 0 00, 0, 0 ,l la a a a     is illustrated by the two solid (14) and 

dashed (18) curves. There is wither one intersection or none, 

depending on the slopes at the origin. The slope of the tan h curve is l

, while the slope of the rational curve is 

 

    Figure 4 

 
 

0

0

0.l

l

a a

a a


   If the last expression is smaller than l , there is 
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an intersection; otherwise, there isn‘t. So out conclusion in Case 2 is 

as follows. 

Let 
0 00 .

l
a and a a    If 

0 0 a l.l la a a   -------(18) 

Then there exists exactly one negative eigenvalue, which we‘ll call 

0 0.   If (140 holds, then there is no negative eigenvalue. Notice 

how the ―missing‖ positive eigenvalue 0  in case 918) now makes its 

appearance as a negative eigenvalue! Furthermore, the zero 

eigenvalue is the borderline case (15); therefore, we use the notation 

0 0.  in the case of (15). 

 

SUMMARY: 

We summarize the various cases as follows: 

Case 1: Only positive eigenvalues. 

Case 2 With (14): Only positive eigenvalues. 

Case 2 With (15): Zero is an eigenvalue, all the rest are positive. 

Case 2 With (18): one negative eigenvalue, all the rest are positive. 

In any case, that is, for any values for 0 ,la and a  there are no complex, 

nonreal, eigenvalues. This fact can be shown directly as before but 

will also be shown by a general, more satisfying, argument in Section 

5.3. Furthermore, there are always an infinite number of possible 

eigenvalues, as is clear from (10). In fact, the tangent function has an 

infinite number of branches. The rational function on the right side of 

(100 always goes from the origin to the   axis as     and so 

must cross each branch of the tangent except possibly the first one. 

For all these problems it is critically important to find all the 

eigenvalues. If even one of them were missing, there would be initial 

data for which we could not solve the diffusion or wave equations. 

This will become clearer in Chapter 5. Exactly how we enumerate the 

eigenvalues, that is, whether we call the first one 0 5 2 ,lor or or     

is not important. It is convenient, however, to number them in a 

consistent way. In the examples presented above we have numbered 

them in a way that neatly exhibits their dependence on 0 .la and a  

What Is the Grand Conclusion for the Robin BCs? As before, we have 
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an expansion 

     , ,n n

n

u x t T t X x   ------(19) 

Where  nX x  are the eigen functions and where 

 nT t 

nkt

nA e


   cos sinn n n nA ct B ct 

for diffusion

for waves.
--------

(20) 

 

Example 1. 

Let 0 0 00 ,l la a a a a l      which is Case 2 with (18). Then the 

grand conclusion takes the following explicit form. As we showed 

above, in this case there is exactly one negative eigenvalue 

2

0 0 0     as well as a sequence of positive ones 

2 0 0,1,2,3,....n n for n      The complete solution of the 

diffusion problem 

0

0 , 0

0 0, 0

0 0

t xx

x x l

u ku for x l t

u a u forx u a u forx l

u fort

     

     

 

 

Therefore is  

 
2
0

2

0
0 0

0

0

1

, cosh 0 sinh

cos sin .n kt

n n n

n n

a
u x t A e x x

a
A e x x





 


 









 
  

 

 
  

 


---------(21) 

The conclusion (21) has the following physical interpretation if, say, 

 ,u x t  is the temperature in a rod of length l . We have taken taken 

the case when energy is supplies at 0x   (absorption of energy by the 

rod, heat flux goes into the rod at its left end) and when energy is 

radiated from the right end (the heat flux goes out.) For a given length 

l  and a given radiation 0,la   there is a negative eigenvalue 

 2

0 0    if and only if the absorption is great enough 

 0 .
1

l

l

a
a

a l

 
  

 Such a large absorption coefficient allows the 

temperature to build up to large up to large values, as we see from the 
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expansion (21). In fact, all the terms get smaller as time goes on, 

except the first one, which grows exponentially due to the factor 

2
0 .

kt
e


 So the rod gets hotter and hotter (unless 0 0,A   which could 

only happen for very special initial data.) 

 If, on the other hand, the absorption is relatively small [That is, 

 0 .
1

l

l

a
a

a l

 
  

then all the eigenvalues are positive and the 

temperature will remain bounded and will eventually decay to zero. 

Other interpretations of this sort are left for the exercises. 

For the wave equation, a negative eigenvalue  2

0 0    would also 

lead to exponential growth because the expansion for  ,u x t  would 

contain the term 

   0 0

0 0 0 .
ct ct

A e B e X x
 

  

This term comes from the usual equation  
22

0T c T c T     for 

the temporal part of a separated solution. 

 

EXERCISE 

1. Find the eigenvalues graphically for the boundary conditions 

     0 0, 0.X X l aX l    

Assume that 0.a   

2. Consider the eigenvalue problem with Robin BCs at both ends: 

       00 0 0, 0.l

X X

X a X X l a X l

 

    
 

(a) Show that 0   is an eigenvalue if and only if 

0 0 .l la a a a l    

(b) Find the eigenfunctions corresponding to the zero eigenvalue. 

(Hint: First solve the ODE for  .X x The solutions are not sine‘s or 

cosines.) 

3. Derive the eigenvalue equation (16) for the negative 

eigenvalues 
2    and the formula (17) for the eigenfunctions. 

4. Consider the Robin eigenvalue problem. If 

0 0 00, 0 ,l l la a and a a a a l      
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Show that there are two negative eigenvalues. This case may be called 

―substantial absorption at both ends.‖ (Hint: Show that the rational 

curve 
 0

2

0( )
l

l

a a
y

a a






 


 has a single maximum and crosses 

the line 1y   in two places. Deduce that it crosses the tanh  curve in 

two places.) 

5. If 0 la a a   in the Robin problem, show that: 

(a) There are no negative eigenvalues if 0,a   there is one if 

2 0,a
l

    and there are two if 2 .a
l

  

(b) Zero is an eigenvalue if and only if 20 .a or a
l

   

6. If 0 la a a  , show that as ,a    the eigenvalues tend to 

the eigenvalues of the Dirichlet problem. That is, 

 
 1

lim 0,n
a

n
a

l






 
  

 
 

Where    
2

n na a      is the  1n st eigenvalue. 

7. Consider again Robin BCs at both ends for arbitrary 0 .la and a  

(a) In 0 la a  plane sketch the hyperbola 0 0 .l la a a a l    Indicate 

the asymptotes. For 0( )la a  on this hyperbola, zero is an eigenvalue, 

according to Exercise 2(a). 

(b) Show that the hyperbola separates the whole plane into three 

regions, depending on whether there are two, one, or no negative 

eigenvalues. 

(c) Label the directions of increasing absorption and radiation on 

each axis. Label the point corresponding to Neumann BCs. 

(d) Where in the plane do the Dirichlet BCs belong? 

8. On the interval 0 1x   of length one, consider the eigenvalue 

problem 

     0 0 0 1 0

X X

X X and X

 

   
 

(absorption at one end and zero at the other). 

(a) Find an eigenfunction with eigenvalue zero. Call it  0 .X x  

(b) Find an equation for the positive eigenvalues 
2.   
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(c) Show graphically from part (b) that there are an infinite number 

of positive eigenvalues. 

(d) Is there a negative eigenvalue? 

9. Consider the unusual eigenvalue problem 

   
   

0

0
0 .

xx

x x

for x l

l
l

l

 

 
 

   


 

 

(a) Show that 0   is a double eigenvalue. 

(b) Get an equation for the positive eigenvalues 0.   

(c) Letting 
1

,
2

l   reduce the equation in part (b) to the 

equation 

2sin cos sin .     

(d) Use part (c) to find half of the eigenvalues explicitly and half of 

them graphically. 

(e) Assuming that all the eigenvalues are nonnegative, make list of 

all the eigenfunctions. 

(f) Solve the problem 0 ,t xxu ku for x l   with the BCs given 

above, and with    ,0 .u x x  

(g) Show that, as  , lim ,t ux t A Bx     for some constants 

A,B, assuming that you can take limits term by term. 

10. Consider a string that is fixed at the end 0x   and is free at the 

end x l  except that a load   (weight) of given mass is attached to the 

right end. 

(a) Show that it satisfies the problem 

     

2 0

0, 0 , ,

tt xx

tt x

u c u for x l

u t u l t ku l t

  

  
 

For some constant k . 

(b) What is the eigenvalue problem in this case? 

(c) Find the equation for the positive eigenvalues and find the 

eigenfunctions. 

      12.  Find the positive eigenvalues and the corresponding 

eighen  functions of the    fourth-order operator 
4 4/d dx with the 

four boundary conditions  
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     ''0 0X X l X l    

     13. Solve the fourth-order eighen value  problem 

'' '' 0 ,X X in x l   with the four boundary conditions 

       ' '0 0 0,X X X l X l     

Where 0  . (Hint : First solve the fourth-order ODE.) 

     14.     A tuning fork may be regarded as a pair of vibrating flexible 

bars with a certain degree of stiffness. Each such bar is calmped at 

one end and is approximately modeled by the fourth-order  PDE 

2 0.u xxxxu c u   It has initial conditions as for the  wave equation. 

Let‘s say that on the end x=0 it is clamped (fixed), meaning that it 

satisfies. 

   0, 0, 0.xu t u t   On the other end x l  it is free, meaning that it 

satisfies    , , 0.xx xxxu l t u l t   Thus there are a total of four 

boundary conditions, two at each end. 

a) Separate the time and space variables to get the eigenvalue 

problem .nnX X  

b) Show that zero is not an eigenvalue. 

c) Assuming that all the eighenvalue are positive, write them as 

4   and find the equation for  . 

d) Find the frequencies of vibration. 

e) Compare your answer in part (d) with the overtones of the 

vibrating sting by looking at the ratio 2 2

2 1/  .Explain why you hear 

an almost pure tone when you listen to a tuning fork. 

Check your progress 

2. Explain about positive Eigen values. 

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------ 

5.7 LET US SUM UP  
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In this we have discussed about Separation of variables, the Dirichlet 

condition, The Neumann condition, The Robin condition, Positive 

eigen values, Negative eigenvalues.Zero eigen values. Eigenvalues 

and  the functions. The Neumann boundary conditions. 

A ―mixed: boundary condition would be Dirichlet at one end and 

Neumann at the other. In any case, that is, for any values for 

0 ,la and a  there are no complex, nonreal, eigenvalues. 

5.8 KEY WORDS  
 

1. Homogeneous Dirichlet conditions for the wave equation 

2. Schtrodinger‘s equation 

3. Neumann and Robin boundary conditions 

4. Method of separation of variables for the case of the Robin 

condition. 

5. Zero is an eigenvalue, all the rest are positive. 

6. One negative eigenvalue, all the rest are positive. 

5.9 QUESTIONS FOR REVIEW 
 

1. Discuss about separation of variables, the Dirichlet Condition 

2. Discuss about the Neumann condition 

3. Discuss about the Robin condition 

4. Discuss about Positive eigen values 

 

5.10 SUGGESTED READINGS AND 

REFERENCES 
 

1. S. L. Ross, Differential Equations, 3rd Edn., Wiley India, 1984. 

2. DiBenedetto, Partial Differential Equations, Birkhaüser, 1995.  

3. L.C. Evans, Partial Differential Equations, Graduate Studies in 

Mathematics, Vol. 19, American Mathematical Society, 1998. 

4. I.N. Sneddon Elements of Partial Differential Equations 

McGrawHill 1986. 
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5. R. Churchil & J. Brown, Fourier Series & Boundary Value 

Problems. 

6. R.C. McOwen , Partial Differential Equations  (Pearson Edu.) 

2003.   

7.Duchateau and D.W. Zachmann, ―Partial Differential Equations,‖ 

Schaum, Outline Series, McGraw hill Series.  

8.Partial Differential Equations, -Walter A.Strauss 

9.Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 

5.11 ANSWERS TO CHECK FOR YOUR 

PROGRESS 
 

1. See section 5.3 

2. See section 5.5 

3. See section 5.6 
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UNIT-6 HARMONIC FUNCTIONS 
 

STRUTURE 

6.0 Objective 

6.1 Introduction 

6.2 Laplace‘s equation 

6.3 Rectangles and cubes 

6.4 MAXIMUM PRINCIPLE 

6.5 Poisson‘s formula 

6.6 Circles, Wedges and Annuli 

6.7 Let us sum up 

6.8 Key words 

6.9 Questions for review 

6.10 Suggestive readings and references 

6.11  Answers to check your progress 

6.0 OBJECTIVE 
 

In this unit we will learn and understand about Laplace equation, 

Maximum principle, 

Rectangles and cubes, Poissons‘s formula, circles, wedges and annuli. 

6.1  INTRODUCTION 
 

This chapter is devoted to the Laplace equation. We introduce two of 

its important properties, the maximum principle and the rotational 

invariance. Then we solve equation in series form in rectangles, 

circles, and related shapes. The case of a circle leads to the beautiful 

Poisson formula. 

6.2 LAPLACE’S EQUATION 
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If a diffusion or wave process is stationary (independent of time), then 

0tu   and 0tu  . Therefore, both the diffusion and the wave 

equations reduce to the Laplace equation: 

0 dim

. 0 dim

. 0 dim

xx

u xx yy

u xx yy zz

u inone ension

u u u intwo ensions

u u u u inthree ensions



      

       

 

A solution of the Laplace equation is called a harmonic function. 

In one dimension, we have simply 0,xxu  so the only harmonic 

functions in one dimension are   .u x A Bx  But this is so simple that 

it hardly gives us a clue to what happens in higher dimensions. 

The inhomogeneous version of Laplace‘s equation 

u f   

With f  a given function, is called Poisson‘s equation. 

Besides stationary diffusions and waves, some other instances of 

Laplace‘s and Poisson‘s equations include the following. 

1. Electrostatics: From Maxwell‘s equations, one has curl 0E   

and div 4 ,E p  where p  is the charge density. The first equation 

implies E grad    for a scalar function   (called the electric 

potential). Therefore, 

  4 ,div grad div E p         

Which is Poisson‘s equation  4 .with f p   

2. Steady fluid flow. Assume that the flow is irrational (no 

eddies) so that  0, , ,curl v wherev v x y z   is the velocity at the 

position  , ,x y z , assumed independent of time. Assume that the fluid 

is incompressible (e.g., water) and that there are no sources or sinks. 

Then 0.div v   Hence v grad for some   (called the velocity 

potential) and 0,div v     which is Laplace‘s equation. 

3.  Analytic functions of a complex variable. Write z x iy   

and 
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          ,f z u z i z u x iy i x iy        

Where u and   are real- valued functions.  An analytic 

function is one that is expressible 

as a power series in z . This means that the powers are not 

  .
nm n nx y but z x iy  Thus 

 
0

n

n

n

f z a z




   

 tan .na complexcons ts  That is, 

     
0

.
n

n

n

u x iy i x iy a x iy




      

Formal differentiation of this series show that 

u u
and

x y y x

    
  

   
 

(see Exercise 1). These are the Cauchy-Riemann equations. If 

we differentiate them, we 

find that 

,xx yx xy yyu u      

So that 0.u   Similarly 0,   where   is the two-

dimensional laplacian. Thus the  

real and imaginary parts of an analytic function are harmonic. 

4. Brownian motion. Imagine Brownian  motion in a container 

D. This means that particles inside D move completely randomly until 

they hit the boundary, when they stop. Divide the boundary arbitrarily 

into two pieces, 1 2C and C  (see Figure 1). Let  , ,u x y z  be the 

probability that a particle that begins at the point  , ,x y z  stops at 

some point of 1.C  Then it can be deduced that 

1 2

0

1 0 .

u in D

u onC u onC

 

 
 

Thus u  is the solution of a Dirichlet problem. 
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As we discussed in previous the basic mathematical 

problem is to solve Laplace‘s or Poisson‘s equation in a 

given domain D  with a condition on .bdy D  

.

u f in D

u u
u h or h or au h onbdy D

n n

 

 
   

 

 

In one dimension the only connected domain is an interval 

 .a x b   We will see that what is intersecting  about 

the two- and three-dimensional cases is the geometry. 

 

Check your prorgress 

1. Explain about Laplace equation. 

-----------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------- 

6.3 MAXIMUM PRINCIPLE 
 

We begin our analysis with the maximum principle, which is easier for 

Laplace‘s equation than for the diffusion equation. By an open set we 

mean a set that includes none of its boundary points. 

Maximum Principle. Let D  be a connected bounded open set (in 

either two- or three-dimensional space). Let either    , , ,u x y or u x y z  

be a harmonic function in D  that is continuous on  .D D bdy D


 

Then the maximum and minimum values of u  are attained on bdy D  

and nowhere inside   tan .unlessu cons t  

In other words, a harmonic function is its biggest somewhere on the 

boundary and its smallest somewhere else on the boundary. 
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To understand the maximum principle, let us use the vector shorthand 

 ,x x y  in two dimensions or  , ,x x y z  in three dimensions. 

Also, the radial coordinate is written as 

   
1 1

2 2 2 2 22 2 .x x y or x x y z      The maximum principle 

asserts that there exist points M MX and X onbdy D  such that 

     m Mu X u X u X 
 

 

for all X D (see Figure 2). Also, there no points inside D  with this 

property  tan .unlessu cons t  There could be several such points on 

the boundary. 

The idea of the maximum principle is as follows, in two dimensions, 

say. At a maximum point inside D , if there were one, we‘d have  

0 0.xx yyu and u   At most maximum points,  0 0.xx yyu and u   So 

we‘d get a contradiction to Laplace‘s equation. However, since it is 

possible that 0xx yyu u   at a maximum point, we have to work a little 

harder to get a proof. 

Here we go. Let 0.  Let    
2
.X u X X    Then, still in two 

dimensions, say, 

 2 2 0 4 0 .u x y in D       
 

But 0xx yy       at an interior maximum point, by the second 

derivative test in calculus! Therefore,  X  has no interior maximum 

in D. 
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Now  X , being a continuous function, has to have a maximum 

somewhere in the closure .D D bdy D


   Say that the maximum of 

 X  is attained at 0 .X bdy D  Then, for all .X D  

       
2 2

0 0 0 max ,
bdy D

u X X X u X X u l        
 

Where l  is the greatest distance from bdy D  to the origin. Since this is 

true for any 0,  we have 

  max .
bdy D

u X u for all X D   

Now this maximum is attained at some point 

   . ,M MX bdy D Sou X u X for all X D


    which is the desired 

conclusion. The existence of a minimum point mx  is similarly 

demonstrated. (The absence of such points inside D  will be proved by 

a different method in Section 6.3.) 

UNIQUENESS OF THE DIRICHLET PROBLEM 

To prove the uniqueness, suppose that 

.

u f inD f in D

u h onbdy D h onbdyD





   

   

We want to show that .u in D  So we simply subtract equations and 

let .w u    Then 0w in D   on .bdy D  By the maximum principle 

     0 0 .m Mw X w X w X for all X D      

Therefore, both the maximum and minimum of  w X  are zero. This 

means that 0 .w and u    

INVARIANCE IN TWO DIMENSIONS 

The Laplace equation is invariant under all rigid motions. A rigid 

motion in the plane consists of translations and rotations. A translation 

in the plane is a transformation 

' ' y b.x x a y     
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Invariance under translations means simply that 
' ' ' '.xx yy x x y yu u u u    

A rotation in the plane through the angle   is given by 

' cos sin

' sin cos .

x x y

y x

 

 

 

    

By the chain rule we calculate 

   

   

' '

' '

' ' ' '' '

' ' ' '' '

cos sin

sin cos

cos sin cos cos sin sin

sin cos sin sin cos cos .

x x y

y x y

xx x y x yx y

yy x y x yx y

u u u

u u u

u u u u u

u u u u u

 

 

     

     

 

 

   

   
 

Adding, we have 

    2 2

' ' ' ' ' '

' ' ' '

cos sin . 0

.

xx yy x x y y x y

x x y y

u u u u u

u u

     

 
 

This proves the invariance of the Laplace operator. In engineering the 

laplacian   is a model for isotropic physical situations, in which there 

is no preferred direction. 

The rotational invariance suggests that the two-dimensional laplacian 

2 2

2 2 2x y

 
  

   

Should take a particularly simple form in polar coordinates. The 

transformation 

cos sinx r y r    

Has the jacobian matrix 

cos sin

sin cos

x y

r r

x y r r

 

 

 

  
    

    
     

 
  

 

With the inverse matrix 

1

sin
cos

cos
sin

r

x x r

r

y y r
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(Beware, however, that  
1

.r x
x r


 

 
 So by the chain rule we have 

sin
cos ,

cos
sin .

x r r

y r r











  
 

  

  
 

  

 

These operators are squared to give 

22

2

2 2
2

2

2 2 2

2 2 2

22

2

2 2
2

2

2 2 2

2 2 2

sin
cos

sin cos
cos 2

sin 2sin cos sin

cos
sin

sin cos
sin 2

cos 2sin cos cos

x r r

r r r

r r r r

y r r

r r r

r r r






 




   

 






 




   

 

   
     

  
   

   

  
  

  

   
  

   

  
   

   

  
  

 
.

r

 

(The last two terms come from differentiation of the coefficients.) 

Adding these operators, we get (1o and behold!) 

2 2 2 2

2 2 2 2 2 2

1 1
.

x y r r r r 

    
     

    
 

It is also natural to look for special harmonic functions that themselves 

are rotationally invariant. In two dimensions this means that we use 

polar coordinates  r,  and look for solutions depending only on r . 

Thus by (5) 

1
0 xx yy rr ru u u u

r
     

If u  does not depend on  . This ordinary differential equation is easy 

to solve: 

  1 1 20, , log r .r r
ru rurc u c c   

The function log r  will play a central role later. 

INVARIANCE IN THREE DIMENSIONS 
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The three- dimensional laplacian is invariant under all rigid motions in 

space. To demonstrate its rotational invariance we repeat the preceding 

proof using vector-matrix notation. Any rotation in three dimensions is 

given by 

' ,X BX  

Where B  is an orthogonal matrix  1 .t tBB B B   The laplacian is 

3 3

1 , 1ii ij iji i j
u u u

 
     where the subscripts of u  denote partial 

derivatives. Therefore, 

' '

, , ,

' '

' 'ki ij lj kl k l

k l i j k l

k k

k

u b b uk l u

u

 
 

   
 



  


 

Because the new coefficient matrix is 

 
,

' .ki ij ij li klkl
i j i

b b bib B B      

So in the primed coordinates u  takes the usual form 

' ' ' ' ' '.x x y y z zu u u u     

For the three-dimensional laplacian 

2 2 2

3 2 22x y z

  
   

  
 

it is natural to use spherical coordinates  r, ,   (see Figure 3). We‘ll 

use the notation 

2 2 2 2 2

2 2

cos cos

sin sin .

r x y z s z

s x y

x s z r

y s s r

 

 

    

 

 

 

 

(What out: In some calculus books the letters   and   are switched.) 

The calculation, which is a little tricky, is organized as follows. The 

chain of 
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Variables is      , , , , , , .x yx z s z r     By the two-dimensional 

Laplace calculation, we have both 

2

1 1
zz ss rr ru u u u u

r r
     

and 

2

1 1
.xx yy ss su u u u u

s s
     

We add these two equations, and cancel ,ssu  to get 

3

2 2

1 1 1 1
.

xx yy zz

rr r s

u u u

u u u u u
r r s s

 

   

    
 

In the last term we substitute 
2 2 2sins r   and in the next-to-last term 

0

cos
. . .0.

s r

r

u r
u u u u

s s s s

s
u u u

r r



 

 



   
   

   

  

 

This leaves us with 

 3 2 2

2 1 1
cot ,

sin
rr ru u u u u u

r r
  



 
      

 
 

Which may also be written as? 

2 2

3 2 2 2 2 2

2 1 1
sin .

sin sinr r r r r
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Finally, let‘s look for the special harmonic functions in three 

dimensions which don‘t change under rotations, that is, which depend 

only on r . By (7) they satisfy the ODE 

3

2
0 .rr ru u u

r
     

So  2 0.r r
r u   It has the solutions 2

1.rr u c  That is, 1

1 2.u c r c    

This important harmonic function 

 
1

2 2 2 21
x y z

r



    

Is the analog of the special two-dimensional function  
1

2 2 2log x y   

found before. Strictly speaking, neither function is finite at the origin. 

In electrostatics the function   1u X r  turns out to be the 

electrostatic potential when a unit charge is placed at the origin. For 

further discussion, see Section 12.2. 

EXERCISE: 

1. Show that a function which is a power series in the complex variable 

x iy  must satisfy the Cauchy-Riemann equations and therefore 

Laplace‘s equation. 

2. Find the solutions that depend only on r  of the equation 

2 ,xx yy zzu u u k u    where k  is a positive constant. 

 int : .H Substituteu
r

  

3. Find the solutions that depend only on r   of the equation 

2 ,xx yyu u k u   where k  is a positive constant. (Hint: Look up 

Bessel‘s differential equation in  MF  or in section 10.5.) 

4. Solve 0xx yy zzu u u    in the spherical shell 0 a r b    with the 

boundary conditions ,u Aon r a and u B on r b     where A and B  

are constants. (Hint: Look for a solution depending only on r .) 

5. Solve 1xx yyu u inr a    with  ,u x y  vanishing on .r a  
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6. Solve  1xx yyu u   in the annulus .a r b   with  ,u x y  

vanishing on both parts of the boundary .r a r b   

7. Solve 1xx yyu u   in the spherical shell  a r b   with 

 , ,u x y z  vanishing on both the inner and outer boundaries. 

8. Solve 1xx yyu u   in the spherical shell  a r b   with 0u   

on 0 .ur aand onr b
r

  


 Then let 0a   in your answer 

and interpret the result. 

9. Prove the uniqueness of the Dirichlet problem 

,u f in D u g    on bdy D  by the energy method. That is 

after subtracting two solutions ,w u    multiply the Laplace 

equation for w  by w  itself and use the divergence theorem. 

10. Show that there is no solution of 

,
u

u f in D g onbdy D
n


  

  

in three dimensions, unless 

 

.
D bdy D

f dx dy dz g dS    
 

(Hint: Integrate the equation.) Also show the analogue in one and two 

dimensions. 

6.4 RECTANGLES AND CUBES 
 

Special geometries can be solved by separating the variables.  

(i)Look for separated solutions of the PDE. 

(ii)Put in the homogeneous boundary conditions to get the eigenvalues. 

This is the step that requires the special geometry. 

(iii)Sum the series. 

(iv)Put in the inhomogeneous initial or boundary conditions. 
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It is important to do it in this order: homogeneous BC first, 

inhomogeneous BC last. 

We begin with 

2 0 ,xx yyu u u in D   
 

Where D  is the rectangle  0 ,0x a y b     on each of whose sides 

one of the standard boundary conditions is prescribed (inhomogeneous 

Dirichlet, Neumann, or Robin). 

 

     Figure 1 

Example 1. 

Solve (1) with the boundary conditions indicated in Figure 1. If we call 

the solution u  with data   1 2 3 4, , , ,g h j k thenu u u u u     where 1u  

has data    2,0,0,0 , 0, ,0,0 ,g u has data h  and so on. For simplicity, 

let‘s assume that 0, 0, 0,h j and k    so that we have Figure 2. Now 

we separate variable      , . .u x y X x Y y  We get 

'' ''
0.

X Y

X Y
   

Hence there is a constant   such that 

'' 0 0 '' 0 0 '' 0 0 .X X for x a and Y Y for x a and Y Y and y b             

 Thus  X x  satisfies a homogeneous one-dimensional problem which 

we well know how to solve:    0 ' 0.X X a   The solutions are 

 
2 2

2

2

1
0,1,2,3,...

2
n n n n

a


 

 
    

 
 

 

1

2
sin .n

n x

X X
a
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Next we look at the y  variable. We have 

   '' 0 ' 0 0 0.Y Y withY Y   
 

(We shall save the inhomogeneous BCs for the last step.) From the 

previous part, we know that 0    for some .n  The Y  equation has 

exponential solutions. As usual it is convention to write them as 

  cosh sinh .n nY y A y B y  
 

 

So    0 ' 0 0 .nY Y B A     Without losing any information we 

may pick 1,B    so that .nA   Then 

  cosh .n n nY y y sinh y   
 

Because we‘re in the rectangle, this function is bounded. Therefore, the 

sum 

   
0

, sin cosh sinhn n n n n

n

u x y A x y y   




 
 

is a harmonic function in D  that satisfies all three homogeneous BCs. 

The remaining BC is    , .u x b g x  It requires that 

   
0

cosh sinh .sinn n n n n

n

g x A b b x   




   

for 0 .x a   This is simply a Fourier series in the eigenfunctions 

sin .n X  

By Chapter 5, the coefficients are given by the formula 

   
1

0

2
cosh sinh sin .

a

n n n n nA b b g x x dx
a
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Example 2. 

The same method works for a three-dimensional box 

 0 ,0 ,0x a y b z c       with boundary conditions on the six 

sides. Take Dirichlet conditions on a cube: 

 

   

         

3 0

0 ,0 ,0

, , ,

0, , ,0, , , , ,0 , , 0.

xx yy zzu u u u in D

D x y z

u y z g y z

u y z u x z u x z u x y u x y

  



 

    

      



    
 

To solve this problem we separate variables and use the five 

homogeneous boundary conditions: 

     

         

'' '' ''
, 0

0 0 0 0.

X Y Z
u X x Y y Z z

X Y Z

X Y Z Y Z 

   

    
 

Each quotient '' '' '', ,X Y Zand
X Y Z

 must be a constant. In the 

familiar way, we find 

   

   

   2 2

sin 1,2,...

sin 1,2,... ,

'' , 0 0.

Y y my m

and

Z z nz n

so that X m n X X

 

 

  

 

Therefore, 

   2 2sinh .X x A m n x   

Summing up, our complete solution is 

   2 2

1 1

, , sinh sin sin .mn

n m

u x y z A m n x my nz
 

 

   

Finally, we plug in our inhomogeneous condition at :x   

   2 2, sinh sin sin .mng y z A m n my nz 
 

This is a double Fourier sine series in the variables !y and z  Its theory 

is similar to that of the single series. In fact, the eigenfunctions 
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 sin .sinmy nz  are mutually orthogonal on the square 

 0 ,0y z     (see Exercise 2). Their normalizing constants are 

 
2

2

0 0
sin sin .

4
my nz dy dz

  
 

 

Therefore, 

 
 

0 02 2 2

4
, sin sin .

sinh
mnA g y z my nz dy dz

m n

 

 



   

Hence the solutions can be expressed as the doubly infinite series (7) 

with the coefficients .mnA  The complete solution to Example 2 is (7) 

and (8). With such a series, as with a double integral, one has to be 

careful about the order of summation, although in most cases any order 

will give the correct answer. 

EXERCISE: 

1. Solve 0xx yyu u   in the rectangle 0 ,0x a y b     with 

the following boundary conditions: 

0 0

0 0 .

x x

y y

u a on x u on x a

u b on y u on y b

    

   
 

(Hint: Note that the necessary condition of Exercise 6.1.11 is satisfied. 

A shortcut is to guess that the solution might be a quadratic polynomial 

in .x and y ) 

2. Prove that the eigenfunctions  sin sinmy nz  are orthogonal 

on the square  0 ,0 .y z      

3. Find the harmonic function  ,u x y  in the square 

 0 ,0D x y       with the boundary conditions: 

 2 1
0 0 , 0 0 cos 1 cos 2 .

2
yu for y and for y u for x and u y y for x         

4. Find the harmonic function in the square  0 ,0 1x a y     with 
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the boundary conditions 

        2,0 , ,1 0, 0, 0, 1, .x xu x x u x u y u y y     

4. Solve Example 1 in the case 

       1, 0b g x h x k x but j x     an arbitrary function. 

5. Solve the following Neumann problem in the cube 

     0 1,0 1,0 1 : , ,1 ,zx y z u withu x y g x y         and 

homogeneous Neumann conditions on the other five faces, where 

 ,g x y  is an arbitrary function with zero average. 

(a) Find the harmonic function in the semi-infinite strip 

 0 ,0x y      that satisfies the ―boundary conditions‖: 

         0, , 0, ,0 , lim , 0.
y

u y u y u x h x u x y


     

(c) What would go awry if we omitted the condition at 

infinity? 

 

6.5 POISSON’S FORMULA 

        

A much more interesting case is the Dirichlet problem for a circle. The 

rotational invariance of   provides a hint that the circle is a natural 

shape for harmonic functions. 

Let‘s consider the problem 

 

2 2 2

2 2 2

0xx yyu u forx y a

u h forx y a

   

  
 

With radius a  and any boundary data  .h   

Our method, naturally, is to separate variables in polar coordinates: 

   u R r    (see Figure 1). From (6.1.5) we can write 
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2

2

1 1
0

1
' ''.

xx yy rr ru u u u u
r r

R R R
r

    

  

 

 

Dividing by R  and multiplying by 2r , we find that 

2

'' 0

'' ' 0.r R rR R





   

  
 

These are ordinary differential equations, easily solved. What 

boundary conditions do we associate with them? 

For    we naturally require periodic BCs: 

   2 .for             

Thus 

   2 cos sin 1,2,... .n and A n B n n         

There is also the solution  0 .with A     

The equation for R  is also easy to solve because it is of the Euler type 

with solutions of the form   .R r r  Since 
2n   it reduces to 

  21 0ar r n r        

Whence .n    Thus   n nR r Cr Dr   and we have the separated 

solutions 

 cos sinr

n

D
u Cr A n B n

r
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For 1, 2,3,....n   In case 0,n   we need a second linearly independent 

solution of (4) (besides R =constant). It is log ,R r  as one learns in 

ODE courses. So we also have the solutions 

log .u C D r   

(They are the same ones we observed back at the beginning of the 

chapter.) 

All of the solutions (8) and (9) we have sound are harmonic functions 

in the disk ,D  except that half of them are infinite at the origin 

 0 .r   But we haven‘t yet used any boundary condition at all in the 

r variable. The interval is 0 .r a   At 0r   some of the solutions 

 lognr and r
 are infinite: We reject them. The requirement that they 

are finite is the ―boundary condition‖ at 0.r   Summing the remaining 

solutions, we have 

 0

1

1
cos sin .

2

n

n n

n

u A r A n B n 




  
 

Finally, we use the inhomogeneous BCs at .r a  Setting r a in the 

series above, we require that 

   0

1

1
cos sin .

2

n

n n

n

h A a A n B n  




    

This is precisely the full Fourier series for   ,h   so we know that 

 
2

0

1
cosn n

A h n d
a



  


   

 
2

0

1
sin .n n

B h n d
a



  


   

Equations (10) to(12) constitute the full solution of our problem. 

Now comes an amazing fact. The series (10) can be summed  

explicitly! In fact, let‘s plug (11) and (12) directly into (10) to get 
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2

0

2

0
1

2

0
1

,
2

cos cos sin sin

1 2 cos .
2

n

n
n

n

n

d
u r h

r
h n n n n d

a

r d
h n

a








 



     



  













 

   
    

   



 



 

The term in braces is exactly the series we summed before in Section 

5.5 by writing it as a geometric series of complex numbers; namely, 

   

 

 

 

 

 

1 1

2 2

2 2

1

1

.
2 cos

n n

in in

n n

i i

i i

r r
e e

a a

re re

a re a re

a r

a ar r

   

   

   

 

 
  

 

  

   

   
    

   

  
 




  

 

 

 

Therefore, 

   
 2

2 2

2 20
, .

2 cos( ) 2

h d
u r a r

a ar r

  


  
 

  
 

This single formula (13), known as Poisson‘s formula, replaces the 

triple of formulas (10)-(12). It expresses any harmonic function inside 

a circle in terms of its boundary values. 

The Poisson formula can be written in a more geometric way as 

follows. Write  ,X x y  as a point polar coordinates  ,r   (see 

Figure 2). We could also think of X as the vector from the origin 0 to 

the point  , .x y  Let 'X  be a point on the boundary. 

 

 

: ,

' : , .

X Polar coordinates r

X Polar coordinates a
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The origin and the points 'X and X  form a triangle with sides 

, ' , ' .r X a X and X X    By the law of cosines 

 
2 2 2' 2 cos .X X a r ar      

 

The are length element on the circumference is ' .ds a d  Therefore, 

Poisson‘s formula takes the alternative form 

 
 

22

2'

'
'

2 'X a

a X u X
u X ds

a X X 





  

for ,X D  where we write    ' .u X h   This is a line integral  with 

respect to arc length ' ,ds a d  since 's a for a circle. For instance, 

in electrostatics this formula (14) expresses the value of the electric 

potential due to a given distribution of charges on a cylinder that are 

uniform along the length of the cylinder. 

A careful mathematical statement of Poisson‘s formula is as follows. 

Its proof is given below, just prior to the exercises. 

Theorem 1. Let    'h u X   be any continuous function on the circle 

.C bdy D  Then the Poisson formula (13), or (14), provides the only 

harmonic function in D  for which 

   
0

0 0lim .
X X

u X h X for all X C


   

This means that  u X  is a continuous function on .D D C


   It is 

also differentiable to all orders inside D . 

The Poisson formula has several important consequences. The key one 

is the following. 

MEAN VALUE PROPERTY 

Let u  be a harmonic function in a disk ,D  continuous in its closure 

.D


 Then the value of u  at the centre of D  equals the average of u  on 

its circumference. 
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Proof. Choose coordinates with the origin 0  at the centre of the circle. 

Put 0X   in Poisson‘s formula (14), or else put 0r   in (13). Then 

 
 2

2'

'
0 '.

2 X a

u Xa
u ds

a a 
   

This is the average of u  on the circumference ' .X a   

MAXIMUM PRINCIPLE 

This was stated and partly proved in Section 6.1. Here is a complete 

proof of its strong form. Let  u X  be harmonic in .D  The maximum 

is attained somewhere (by the continuity of u on D


, say at .MX D


  

We have to show that MX D


  unless u  constant. By definition of 

,M  we know that 

    .Mu X u X M for all X D  
 

We draw a circle around MX  entirely contained in D  (see Figure 3). 

By the mean value property,  Mu X  is equal to its average around the 

circumference. Since the average is no greater than the maximum, we 

have the string of inequalities 

  .MM u X averageoncircle M  
 

Therefore,  u X M  for all X  on the circumference. This is true for 

any such circle. So  u X M  for all X  in the diagonally shaded 

region (see Figure 3). Now we repeat the argument with a different 

centre. We can fill the whole domain up with circles. In this way, using 

the assumption that D  is connected, we reduce that  u X M  

throughout D . So tan .u cons t  
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DIFFERENTIABILITY 

Let u  be a harmonic function in any open set D  of the plane. Then 

means that 
2 2 100

2 100, , , , ,u u u u u
x y x yx x

    
    

 and so on, exist 

automatically.  Let‘s show this first for the case where D  is a disk with 

its centre at the origin. Look at Poisson‘s formula in its second form 

(14). The integrand is differentiable to all order for .X D  Note that 

'X bdy D so that '.X X  By the theorem about differentiating 

integrals (Section A.3), we can differentiate under the integral sign. So 

 u X  is differentiable to any order in .D  

Second, let D be any domain at all, and let 0 .X D  Let B  be a disk 

contained in D  with centre at 0.X  We just showed that  u x  is 

differentiable inside ,B  and hence at 0.X  But 0X is an arbitrary point 

in .D  So u  is differentiable (to all orders) at all points .D  

This differentiability property is similar to the one we saw in Section 

3.5 for the one-dimensional diffusion equation, but of course it is not at 

all true for the wave equation. 

PROOF OF THE LIMIT  

We begin the proof by writing (13) in the form 

 

for ,r a  where 

 
2 2

2 2
1

, 1 2 cos
2 cos

n

n

a r r
P r n

a ar r a
 







  
    

   


 

is the Poisson kernel. Note that p  has the following three properties. 

     
2

0
, ,

2

d
u r P r h
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 , 0 .p r for r a    This property follows from the observation that  

 
22 2 2 22 cos 2 0.a ar r a ar r a r       

 

 
2

0
, 1.

2

d
p r

 





 

This property follows from the second part of (17) because  

2

0
cos 0 1,2,....n d for n



     

 ,p r   is a harmonic function inside the circle. This property follows 

from the fact that each term   cos
n

r n
a

  in the series is harmonic and 

therefore so is the sum. 

Now we can differentiate under the integral sign (as in Appendix A.3) 

to get 

   

 

2

2 20

2

0

1 1 1 1
,

2

0. 0

rr r rr r

d
u u u p p p r h

r r r r

h d



 




  



 

 
      

 

 





 

for .r a  So u  is harmonic in .D  

So it remains to prove (15). To do that, fix an angle 0
 and consider a 

radius r  near .a  Then we will estimate the difference 

         
2

0 0 0 0
0

, ,
2

d
u r h p r h h

 
     


     

 

by property (ii) of .p  But  ,p r   is concentrated near 0.   This is 

true in the precise sense that, for 2 ,       

 
   

2 2 2 2

2 2 2 2
,

2 cos 4 sin
2

a r a r
p r

a ar r a r ar




 
  

   
 

for r  sufficiently close to a . Precisely, for each (small) 0   and 

each (small) 0,  (19) is true for r  sufficiently close to .a  Now from 

property (i), (18), and (19), we have 
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0

0 0
0 0 0 0, ,

2

d
u r h p r h h

 

    


     





  
     

 

for r  sufficiently close to .a  The   in the first integral came from the 

continuity of .h  In fact, there is some 0   such that 

    00
.h h for          Since the function h H  for some 

constant ,H  and in view of property (ii), we deduce from (20) that 

     0 0, 1 2u r h H    
 

Provided r  is sufficiently close to .a This is relation (15). 

EXERCISE: 

Suppose that u  is a harmonic function in the disk  2D r   and that 

3sin 2 1 2.u for r    Without finding the solution, answer the 

following questions. 

Find the maximum value of .u in D


 

Calculate the value of u  at the origin. 

Solve 0xx yyu u   in the disk  r a  with the boundary condition 

1 3sin .u on r a    

Same for the boundary condition 
3sin .u   (Hint: Use the identity 

3sin 3 3sin 4sin .    ) 

Show that  ,p r   is a harmonic function in D  by using polar 

coordinates. That is, use(6.1.5) on the first expression in (17).  

Check your progress 

2. Explain about Poisson‘s formula 

---------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

6.6 CIRCLES, WEDGES, AND ANNULI 
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The technique of separating variables in polar coordinates works for 

domains whose boundaries are made up of concentric circles and rays. 

The purpose of this section is to present several examples of this type. 

In each case we get the expansion as an infinite series.  (But summing 

the series to get a Poisson-type formula is more difficult and works 

only in special cases.) The geometries we treat here are 

 

 

 

0: 0 ,0

: 0

:

AWedge r a

An annulus a r b

The Exterior of a circle a r

    

  

  
 

We could do Dirichlet, Neumann, or Robin boundary conditions. This 

leaves us with a lot of possible examples! 

Example 1. The Wedge 

Let us take the wedge with three sides  0, ,and r a      and solve 

the Laplace equation with the homogeneous Dirichlet condition on the 

straight sides and the inhomogeneous Neumann condition on the 

curved side (see Figure1). That is, using the notation  , ,u u r   the 

BCs are 

       ,0 0 , , , .
u

u r u r a h
r

  


  


 

The separation-of-variables technique works just as for the circle, 

namely, 

2'' 0, '' ' 0.r R rR r         

 

So the homogeneous conditions lead to 

   '' 0, 0 0.          

This is our standard eigenvalue problem, which has the solutions 
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2

, sin
n n 

 
 

 
   

   

As in Section 6.3, the radial equation 

2 '' ' 0r R rR R    

is an ODE with the solutions   ,R r r  where 

2 0 .nor    


       The negative exponent is reject again 

because we are looking for a solution  ,u r  s that is continuous in the 

wedge as well as its boundary: the function 
n

r





 is infinite at the 

origin (which is a boundary point of the wedge). Thus we end up with 

the series 

 
1

, sin .
n

n

n

n
u r A r


 








 
 

Finally, the inhomogeneous boundary condition requires that 

 
1

1

a sin .
n

n

n

n n
h A


 


 


 



   

This is just a Fourier sine series in the interval  0, ,  so its 

coefficients are given by the formula 

 
1

0

2
sin .

n

n

n
A a h d

n

 
 

 
 




 

The complete solution is given by (5) and (6). 

 

Example 2. The Annulus 

The Dirichlet problem for an annulus (see Figure 2) is 
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2 2 2 2

2 2 2

2 2 2

0 0xx yyu u in a x y b

u g for x y a

u h for x y b





     

  

  

 

The separated solutions are just the same as for a circle except that we 

don‘t throw out the functions log ,nr and r
 as these functions are 

perfectly finite within the annulus. So the solution is 

     

 

0 0

1

1
, log cos

2

sin .

n n

n n

n

n n

n n

u r C D r C r D r n

A r B r n

 










   

 


 

The coefficients are determined by setting r a and r b   (see 

Exercise 3). 

Example 3. The Exterior of a Circle 

The Dirichlet problem for the exterior of a circle (see Figure 3) is 

 

2 2 2

2 2 2

2 2

0

.

xx yyu u for x y a

u h for x y a

u bounded as x y



   

  

    

We follow the same reasoning as in the interior case. But now, instead 

of finiteness at the origin, we have imposed boundedness at infinity. 

Therefore, nr  is excluded and nr  is retained. So we have 

   0

1

1
, cos sin .

2

n

n n

n

u r A r A n B n  






    

 

The boundary condition means 
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   0

1
cos sin .

2

n

n nh A a A n B n   
 

So that 

 cos
n

n

a
A h n d




  

 
 

 

and 

 sin .
n

n

a
B h n d




  

 
 

 

This is the complete solution but it is one of the rare cases when the 

series can actually be summed. Comparing it with the interior case, we 

see that the only difference  between the two sets of formulas is that 

r and a  are replaced by 
1 1.r and a 

 Therefore, we get Poisson‘s 

formula with only this alteration. The result can be written as 

   
 

 

2
2 2

2 20
,

2 cos 2

h d
u r r a

a ar r

  


  
 

  
 

for .r a  

These three examples illustrate the technique of separating variables in 

polar coordinates. A number of other examples are given in the 

exercises. What is the most general domain that can be treated by this 

method? 

EXERCISE: 

1. Solve 0xx yyu u   in the exterior  r a  of a disk, with the 

boundary condition 1 3sin ,u on r a    and the condition at infinity 

that u  be bounded as .r    

2. Solve 0xx yyu u   in the disk r a  with the boundary 

condition 

  ,
u

hu f
r
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Where  f   is an arbitrary function. Write the answer in terms of the 

Fourier coefficients of  f  . 

3. (a) Find the steady-state temperature distribution inside an 

annular plate  1 2 ,r   whose outer edge  2r   is insulated, and on 

whose inner edge  1r   the temperature is maintained as 
2sin .  

(Find explicitly all the coefficients, etc.) 

(b)Same, except 0u   on the outer edge. 

4.  Find the harmonic function u  in the semi disk 

 1,0r      with  u  vanishing on the diameter  0,   and 

sin sin 2 1.u on r      

5. Solve the problem 0 ,xx yyu u in D   with 0u   on the two 

straight sides, and  u h   on the arc, where D  is the wedge of 

Figure 1, that is, a sector of angle   cut out of a disk of radius .  

Write the solution as a series, but don‘t attempt to sum it. 

6. An annular plate with inner radius  and outer radius b  is held 

at temperature B  at its outer boundary and satisfies the boundary 

condition u A
r

 


 at inner boundary, where Aand B  are constants. 

Find the temperature if it is at a steady state. (Hint: It satisfies the two-

dimensional Laplace equation and depends only on .r ) 

7.  Solve 0xx yyu u   in the quarter-disk 

 2 2 2 , 0, 0x y a x y     with the following BCs: 

0 0 0 1 .
u

u on x and on y and on r a
r


    


 

Write the answer as an infinite series and write the first two nonzero 

terms explicitly. 

8.  Prove the uniqueness of the Robin problem 

, ,
u

u f in D au h onbdy D
n
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 Where D  is any domain in three dimensions and where   is a 

positive constant. 

6.7 LET US SUM UP 
 

In this unit we have discussed about Laplace equation, A solution of 

the Laplace equation is called a harmonic function. From Maxwell‘s 

equations, one has curl 0E   and div 4 ,E p  where p  is the charge 

density.  

Maximum Principle: Let D  be a connected bounded open set (in either 

two- or three-dimensional space). Let either    , , ,u x y or u x y z  be a 

harmonic function in D  that is continuous on  .D D bdy D


  Then 

the maximum and minimum values of u  are attained on bdy D  and 

nowhere inside   tan .unlessu cons t  

Mean value property: Let u  be a harmonic function in a disk ,D  

continuous in its closure .D


 Then the value of u  at the centre of D  

equals the average of u  on its circumference. 

6.8 KEY WORDS 
 

1. Both the diffusion and the wave equations reduce to the Laplace 

equation. 

2. A solution of the Laplace equation is called a harmonic function. 

3. From Maxwell‘s equations, one has curl 0E   and div 4 ,E p  

where p  is the charge density. 

4. The maximum principle, which is easier for Laplace‘s equation 

than for the diffusion equation. 

5. The rotational invariance suggests that the two-dimensional 

laplacian 

2 2

2 2 2x y

 
  

   

6. The technique of separating variables in polar coordinates works 

for domains whose boundaries are made up of concentric circles 
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and rays. The purpose of this section is to present several examples 

of this type. 

6.9 QUESTIONS FOR REVIEW 
 

1. Discuss about Laplace‘s equation 

2. Discuss about Rectangles and cubes 

3. Discuss about Poisson‘s formula 

4. Discuss about Circles, Wedges and annuli 

6.10 SUGGESTED READINGS AND 

REFERENCES 
1. S. L. Ross, Differential Equations, 3rd Edn., Wiley India, 1984. 

2. DiBenedetto, Partial Differential Equations, Birkhaüser, 1995.  

3. L.C. Evans, Partial Differential Equations, Graduate Studies in 

Mathematics, Vol. 19, American Mathematical Society, 1998. 

4. I.N. Sneddon Elements of Partial Differential Equations 

McGrawHill 1986. 

5. R. Churchil & J. Brown, Fourier Series & Boundary Value 

Problems. 

6. R.C. McOwen , Partial Differential Equations  (Pearson Edu.) 

2003.   

7. Duchateau and D.W. Zachmann, ―Partial Differential Equations,‖ 

Schaum, Outline Series, McGraw hill Series.  

8. Partial Differential Equations, -Walter A.Strauss 

9. Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 

6.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  See section 6.2 

 

2. See section 6.5 
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UNIT-7 GREEN’S IDENTITIES AND  

GREEN’S FUNCTIONS 
 

STRUTURE 

7.0 Objective 

7.1 Introduction 

7.2 Green‘s first Identity 

7.3 Green‘s second Identity 

7.4 Green‘s functions 

7.5 Half space and sphere 

7.6 Let us sum up 

7.7 Key words 

7.8 Questions for review 

7.9 Suggestive readings and references 

7.10 Answer to check your progress 

7.0 OBJECTIVE 
 

In this unit we will learn ad discuss about Green‘s first identity, 

Green‘s second identity, Green‘s functions and Half space and sphere. 

7.1 INTRODUCTION 
 

The Green‘s identities for the laplacian lead directly to the maximum 

principle and to Dirichlet‘s  principle about minimizing the energy.  

The Green‘s function is a kind of universal solution for harmonic 

functions in a domain. All other harmonic functions can be expressed 

in terms of it.  
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Combined with the method of reflection, the Green‘s function leads in 

a very direct way to the solution of boundary problems in special 

geometries. 

 George Green was interested in the new phenomena of electricity and 

magnetism in the early 19th century. 

7.2 GREEN’S FIRST IDENTITY 

NOTATION 
In this chapter the divergence theorem and vector notation will be used 

extensively. Recall the notation (in three dimensions) 

 

31 2

, ,

. ,

x y zgrad f f thevector f f f

FF F
div F F

x y z

  

 
    

    

Where  1 2 3, ,F F F F  is a vector field. Also, 

2 2 2 2 2

.

.

xx yy zz

x y z

u div grad u u u u u

u grad u u u u

       

    
 

Watch out which way you draw the triangle: in physics texts one often 

finds the laplacian .  written as 
2 ,  but write it as .  

We will write almost everything in this chapter for the three-

dimensional case. (However, using two dimensions is okay, too, even 

n  dimensions.) Thus we write 

... ...dx dydz
D D

dX      
 

if D  is a three-dimensional region (a solid), and  

... ... ,
bdy D s

dS dS   
 

Where S bdyD  is the bounding surface for the solid region D . Here 

dS  indicates the usual surface integral, as in the calculus. 

 Our basic tool in this chapter will be the divergence theorem: 
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. ,
D bdy D

divF dX F ndS    
 

Where F  is any vector function, D  is a bounded solid region, and n  

is the unit outer normal on bdy D  (see Figure 1) (see Section A.3). 

GREEN’S FIRST IDENTITY 

We start from the product rule 

 x x x xxx
u u u   

 

and the same with y and z  derivatives. Summing, this leads to the 

identity 

 . . .u u u          

 

These we integrate and use the divergence theorem on the left side to 

get 

. ,
bdy D D D

u
dS udX u dX

n
  


    

       
 

Where .u n u
n

  


 is the directional derivative in the outward 

normal direction. This is Green‘s first identity. It is valid for any solid 

region D  and any pair of functions .u and   For example, we could 

take 1   to get 

.
bdy D D

u
d S u dX

n


 

    
 

 As an immediate application of (2), consider the Neumann 

problem in any domain .D  That is, 
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  .

u f x in D

u
h x onbdy D

n

 




  

By (2) we have 

.
bdy D D

h d S f dX    
 

It follows that the data  f and h  are not arbitrary but are required to 

satisfy condition (4). Otherwise, there is no solution. In that sense the 

Neumann problem (3) is not completely well-posed. On the other 

hand, one can show that if (4) is satisfied, then (3) does have a solution 

so the situation is not too bad. 

 What about uniqueness in problem (3)? Well, you could add 

any constant to any solution of (3) and still get a solution. So problem 

(3) lacks uniqueness as well as existence. 

MEAN VALUE PROPERTY 

In three dimensions the mean value property states that the average 

value of any harmonic function over any sphere equals its value at the 

center. To prove this statement, let D  is the sphere (surface)  ,X a  

say; that is,  2 2 2 2 .x y z a    then bdy D  is the sphere (surface) 

 .X a  Let 0u   in any region that contains D  and .bdy D  For a 

sphere, n  points directly away from the origin, so that 

. . ,x y z

u X x y z u
n u u u u u

n r r r r r

 
       

 
 

Where  
1

2 2 2 2r x y z X     is the spherical coordinate, the 

distance of the point  , ,x y z  from the centre 0 of the sphere. 

Therefore, (2) becomes 

0.
bdy D

d S    
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Let‘s write this integral in spherical coordinates,  , , .r    Explicitly, 

(5) takes the form 

 
2

2

0 0
, , sin 0ru a a d d

 

        

 Since .r a onbdy D  We divide this by the constant 
24 a  (the area of 

bdy D ). This result is valid for all 0,a   so that we can think of a as a 

variable and call it .r  Then we pull 
r




 outside the integral (see 

Section A.3), obtaining 

 
2

0 0

1
, , sin 0.

4
u r d d

r

 

    


  
   

   

Thus 

 
2

0 0

1
, , sin

4
u r f d d

 

   
  

 

is independent of .r  This expression is precisely the average value of 

u  on the sphere  .X r  In particular, if we let 0,r   we get 

   
2

0 0

1
sin 0 .

4
u o d d u

 

  


   

That is, 

 
1

0 .
s

u dS u
areaof S

 
 

This proves the mean value property in three dimensions. 

Actually, the same idea works in n  dimensions. For 2n   recall that 

we found another proof in Section 6.3 by a completely different 

method. 

MAXIMUM PRINCIPLE 

Exactly as in two dimensions in Section 6.3, we deduce from the mean 

value property the maximum principle. 

If D  is any solid region, aa non constant harmonic function in D  

cannot take its maximum value inside D , but only on .bdy D  
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It can also be shown that the outward normal derivative 0u
n

 


 

there. The last assertion is called the Hopf maximum principle. For a 

proof, see  .PW  

UNIQIQUENESS OF DIRICHLET’S PROBLEM 

We  gave one proof in Section 6.1 using the maximum principle. Now 

we give another proof by the energy method. If we have two harmonic 

functions 1 2u and u  with the same boundary data, then their difference 

1 2u u u   is harmonic and has zero boundary data. We go back to 

(GI) and substitute .u   Since u . Since u  is harmonic, we have 

0u   and 

2
.

bdy D D

u
u d S u dX

n


 

    
 

Since 0 ,u onbdy D  the left side of (7) vanishes. Therefore, 

2
0.

D

u dX     By the first vanishing theorem in Section A.1, it 

follows that 
2

0u in D  . Now a function with vanishing gradient 

must be a constant (provided that D  is connected). So  u X C  

throughout .D  But u  vanishes somewhere (on bdy D ), so C  must be 

0.  Thus   0 .u X in D  This proves the uniqueness of the Dirichlet 

problem. 

Uniqueness of Neumann‘s problem: If 

0 0 ,uu in Dand onbdy D
n

  


 then u  is a constant in D  . 

DIRICHLET’S PRINCIPLE 

This is an important mathematical theorem based on the physical idea 

of energy. It states among  all the functions  w X  in D  that satisfy 

the Dirichlet boundary condition 

  ,w h X onbdy D  
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the lowest energy occurs for the harmonic function satisfying (8). In 

the present Context the energy is defined as  

 
21

.
2

D

E w w dX     

This is the pure potential energy, there being no kinetic energy because 

there is no motion. Now it is a general principle in physics that any 

system prefers to go to the state of lowest energy, called the ground 

state. Thus the harmonic function is the preferred physical stationary 

state. Mathematically, Dirichlet‘s principle can be stated precisely as 

follows: 

Let  u X  be the unique harmonic function in D  that satisfies (8). Let 

 w X  be any function in D  that satisfies (8). Then 

   .E w E u  

To prove Dirichlet‘s principle, we let u w    and expand the square 

in the integral 

   

   

21

2

. .

D

D

E w u dX

E u u dX E



 

  

    

  

  
 

Next we apply Green‘s first identity (GI) to the pair functions .u and   

In (GI) two of the three are zero because 0   on 

0 .bdy D and u in D   Therefore, the middle term in (11) is also zero. 

Thus 

     .E w E u E    

Since it is obvious that   0,E    we deduce that    .E w E u  This 

means that the energy is smallest when .w u  This proves Dirichlet‘s 

principle. 

An alternative proof goes as follows. Let  u X  be a function that 

satisfies (8) and minimizes the energy (9). Let  X  be any function 
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that vanishes on .bdy D  Then u   satisfies the boundary condition 

(8). So if the energy is smallest for the function ,u  we have 

       2

D

E u E u E u u dX E           

For any constant .  The minimum occurs for 0.  By calculus, 

0.
D

u dX     

This is valid for practically all functions .in D  Let 'D  be any strict 

sub domain of ;D  that is, ' .D D


  Let 

   1 ' 0 '.X for X D and X for X D D       In (13) we choose 

this function .   (Because this   is not smooth, an approximation 

argument is required that is omitted here.) Then (13) takes form  

'

0 '.
D

udX for all D     

By the second vanishing theorem in Section A.1, it follows that 0u   

in .D  Thus  u X  is a harmonic function. By uniqueness, it is the only 

function satisfying (8) that can minimize the energy. 

EXERCISE: 

1. Derive the three-dimensional maximum principle from the mean 

value property. 

2. Prove the uniqueness up to constants of the Neumann problem 

using the energy method. 

3. Prove the uniqueness of the Robin problem 

     u a X u X h X
n

  


 provided that   0a X   on the 

boundary. 

4. Generalize the energy method to prove uniqueness for the diffusion 

equation with Dirichlet boundary conditions in three conditions. 

5. Prove Dirichlet‘s principle for the Neumann boundary condition. It 

asserts that among all real-valued functions  w X on D  the 

quantity 
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21

2
D bdy D

E w w dX hwdS        

is the smallest for ,w u  where u  is the solution of the Neumann 

problem 

 0 , .
u

u in D h X onbdy D
n


  


 

It is required to assume that the average of the given function  h X  is 

zero (by Exercise 6.1.11). 

Notice three features of this principle: 

(i)There is no constraint at all on the trial functions  .w X   

(ii) The function  h X  appears in the energy. 

(iii) The functional  E w  does not change if a constant is added to 

 .w X   

(Hint: Follow the method in Section 7.1.) 

Let Aand B  ne two disjoint bounded spatial domains, and let D  be 

their exterior. So .bdy D bdy A bdy B   Consider a harmonic function 

 u X  in D  that tends to zero at infinity, which is constant on bdy A  

and constant on ,bdy B  and which satisfies 

0 0.
bdy A bdy B

u u
dS Q and d S

n n

 
  

      

[Interpretation: The harmonic function  u X  is the electrostatic 

potential of two conductors, ;Aand B Q  is the charge on ,A while B  is 

uncharged.] 

7. Show that the solution is unique. (Hint: Use the Hopf maximum 

principle.) 

Show that 0 .u in D  [Hint: If not, then  u X  has a negative 

minimum. Use the Hopf principle again.] 
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8. Show that 0 .u in D  

(Rayleigh-Ritz approximation to the harmonic function u in D  with 

.)u honbdy D  Let 0 1, ,..., nw w w  be arbitrary functions such that 

0 hw   on bdy D  and 1 ... w 0 on bdy D.n nw w    The problem is to 

find constants 1,..., nc c  so that 

0 1 1 ... n nw c w c w    has the least possible energy. 

9. Show that the constants must solve the linear system 

   0

1

, , 1,2,..., .
n

j k k j

k

w w c w w for j n


        

10. Consider the problem 0xx yyu u   in the triangle 

 0, 0,3 3x y x y     with the boundary conditions 

       ,0 0 0, 3 ,3 3 0u x u y y y u x x    
 

Check your progress 

1. Explain about Green‘s first identity 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------- 

7.3 GREEN’S SECOND IDENTITY 
 

Green‘s second identity is the higher-dimensional version of the 

identity. It leads to a basic representation formula for harmonic 

functions that we require in the next section. 

 The middle term in (GI) does not change if u and  are switched. So 

of we write (GI) for the pair u and , and again for the pair u and , 

and then subtract , we get 

  .
D bdy D

u u
u u dX u dS

n n
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This is green‘s second identity. Just (GI), it is valid for any pair of 

functions .u and   

It leads to the following natural definition. A boundary condition is 

called symmetric for the operator   if the right side (G2) vanishes for 

all pairs of functions ,u   that satisfy the boundary condition. Each of 

the three classical boundary conditions (Dirichlet, Neumann, and 

Robin) is symmetric. 

REPRESENTATION FORMULA 

This formula represents any harmonic function as an integral over the 

boundary. It states the following: If 0 ,u in D   then 

   0

0 0

1 1

4
bdy D

u dS
u X u X

n X X X X n 

   
           

  \ 

What is involved here is the same fundamental radial solution 1r  that 

we found in Section 6.1, but translated by the vector 0.X  

Proof of (1). The representation formula (1) is the special case of (G2) 

with the choice    
1

04 .X X X 


    Clearly, the right side of 

(G2) agrees with (1). Also, 0 0,u and      which kills the left side 

of (G2). So where does the left side of (1) come from? From the fact 

that the function  X  is infinite at the point 0.X  

Therefore, it is forbidden to apply (G2) in the whole domain D.  So 

let‘s take a pair of scissors and cut out a small ball around 0.X Let D  

be the region D  with this ball (of radius   and centre 0X ) excised 

(see Figure 1). For simplicity let 0X  be the origin. Then 

   1/ 4 ,X r    where  
1/2

2 2 2 .r x y z X     Writing down 

(G2) with this choice of ,  we have, since 0 ,u in D      

1 1
. . 0.

bdy D

u
u dS

n r n r
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But bdy D  consists of two parts: the original boundary bdy D  and the 

sphere  .r   On the sphere, / / .n r      Thus the surface 

integral breaks into two pieces. 

1 1 1 1
. . 0. . . ..

bdy D r

u u
u dS u dS

n r n r r r r r
 

          
                   
     

 

This identity (2) is valid for any small 0.  Our representation 

formula (1) would follow provided that we could show that the right 

side of (2) tended to  4 0 0.u as   

Now, on the little spherical surface   ,r  we have 

2 2

1 1 1
,

r r r

  
    

  
 

So that the right side of (2) equals 

2

1 1
4 4 ,

r r

u u
u dS d S u

r r
 




 

 
   

        

Where u


 denotes the average value of  u X  on the sphere 

,X r   and /u r


   denotes the average value of /u n   on this 

sphere. As 0,  the expression (3) approaches 

     4 0 4 .0. 0 4 0
u

u u
r

  


 


 

because u  is continuous and /u r   is bounded. Thus (2) turns into 

(1), and this completes the proof. 

 The corresponding formula in two dimensions is 

     0 0 0

1
log log

2
bdy D

u
u X u X X X X X ds

n n
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Whenever 0u   in a plane domain D  and 0X  is a point with in .D  

The right side is a line integral over the boundary curve with respect to 

arc length. Log denotes the natural logarithm and ds  the arc length on 

the bounding curve. 

EXERCISE: 

Derive the representation formula for harmonic functions (7.2.5) in 

two dimensions. 

Let  X  be any 
2C  function defined on all of three-dimensional 

space that vanishes outside some sphere. Show that 

   
1

0 .
4

dX
X

X
 


      

The integration is taken over the region where  X  is not zero. 

Give yet another derivation of the mean value property in three 

dimensions by choosing D  to be a ball and 0X  its centre in the 

representation formula (1). 

Check your progress 

2. Explain about Green‘s second identity 

-------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------

------------------------------------------------------------------------------- 

7.4 GREEN’S FUNCTIONS 
 

We now use Green‘s identities to study the Dirichlet problem. The 

representation formula (7.2.1) used exactly two properties of the 

function    
1

04 :X X X 


    that it is harmonic except at   0X

and that it has a certain singularity there. Our goal is to modify this 

function so that one of the terms in (7.2.1) disappears. The modified 

function is called the Green‘s function for .D  
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Definition. The Green‘s function  G X  for the operator   and the  

domain D  at the point 0X D  is a function defined for X D  such 

that: 

(i)  G X  possesses continuous second derivatives and 0 ,G in D   

except at the point 0.X X  

(ii)   0 .G X for x bdyD   

(iii)This function    01/ 4G X X X   is finite at 0X  and has 

continuous second derivatives everywhere and is harmonic at 0.X  

It can be shown that a Green‘s function exists. Also, it is unique by 

Exercise 1. The usual notation for the Green‘s function is  0, .G X X  

Theorem 1. If  0,G X X is the Green‘s function, then the solution of 

the Dirichlet problem is given by the formula 

   
 0

0

,
.

bdy D

G X X
u X u X d S

n




   

 Proof. Let us go back to the representation formula (7.2.1): 

 0 ,
bdy D

u
u X u d S

n n




  
  

  
   

Where    
1

04 ,X X X 


    as before. Now let‘s write 

     0, .G X X X H X   [This is the definition of  .H X ] Then 

 H X  is a harmonic function throughout the domain D  [by (iii) and 

(i)]. We apply Green‘s second identity (G2) to the pair of harmonic 

functions  u X  and  H X : 

0 .
bdy D

H u
u h dS

n n

  
  

  
   

Adding (2) and (3), we get 
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 0 .
bdy D

G u
u X u G dS

n n

  
  

  
   

But by (ii), G  vanishes on ,bdyD  so the last term vanishes and we end 

up with formula (1). 

 The only thing wrong with this beautiful formula is that it is not 

usually easy to find G  explicitly. Nevertheless, in the next section 

we‘ll see how to use the reflection method to find G  in some 

situations and thereby solve the Dirichlet problem for some special 

geometries. 

SYMMETRY OF THE GREEN’S FUNCTION 

For any region D  we have a Green‘s function  0, .G X X  It is always 

symmetric: 

   0 0 0, , .G X X G X X for X X   

In order to prove (4), we apply Green‘s second identity (G2) to the pair 

of functions        , ,u X G X a and X G X b   and to the domain 

.D  By D  we donate the domain D  with two little spheres of radii   

cut out around the points a and b  (see Figure 1). So the boundary of 

D  consists of three parts: the original boundary bdy D  and the two 

spheres .X a and X b     Thus 

  ,
D bdy D

u
u u dX u dS A B

n n


  



 

  
       

  
      

Where 

X a

u
A u dS

n n




 

  
  

  
   

and B  is given by the same formula at .b  Because both u and   

vanish on ,bdy D  the integral over bdy D  also vanishes. Therefore, 

0A B    for each .  
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Let‘s calculate the limits as 0.  We shall then have 

lim lim 0.A B    For ,A  denote .r X a   Then 

2

0 0

1 1
lim lim sin

4 4
r

A H H r d d
r n n r


   

 


 


      
         

     
   

Where   and   are the spherical angles for x a , and H is a 

continuous  function. Now 
r

 
 

 
 for the sphere. Among the four 

terms in the last integrand. Only the third one contributes a nonzero 

expression to the limit (for the same reason as in the derivation of 

(7.2.1). Thus  

 
2

20 00 0

1
lim lim sin

4
A d d a

 

    



 

 
   

by cancellation of the 2 , A quite similar calculation shows that 

 lim .B u b    therefore, 

         0 lim , , .A B a u b G a b G b a        

This proves the symmetry (4). 

In electrostatics,  0,G X X  is interpreted as the electric potential 

inside a conducting surface S bdy D  due to a charge at a single point 

0.X  The symmetry (4) is known as the principle of reciprocity. It 

asserts that a source located at the point a produces at the point b the 

same effect as a source at b would produce at a. 

 The Green‘s function also allows us to solve Poisson‘s 

equation. 

Theorem 2. The solution of the problem 

u f in D u h onbdy D    
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Is given by 

   
 

   0

0 0

,
, .

bdy D D

G X X
u X h X d S f X G X X dX

n


 

      

The proof is left as an exercise. 

EXERCISE: 

1. Show that the Green‘s function is unique. (Hint: Take the 

difference of two of them.) 

2. Prove Theorem 2, which gives the solution of Poisson‘s 

equation in terms of the Green‘s function. 

3. Verify the limit of A  as claimed in the proof of the 

symmetry of the Green‘s function. 

7.5 HALF-SPACE AND SPHERE 
 

We solve the harmonic functions in a half-space and a sphere by 

combing the Green‘s function with the method of reflection. 

THE HALF-SURFACE 

We first determine the Green‘s function for a half-space. A half-space 

is the region lying on one side of a plane. Although it is an infinite 

domain, all the ideas involving Green‘s functions are still if we 

impose the ―boundary condition at infinity‖ that the functions and 

their derivatives tend to 0 as .X    

We write the coordinates as  , , .X x y z  Say that the half-space is 

 0 ,D z   the domain that lies above the xy  plane (see Figure 1). 

Each point  , ,X x y z in D has a reflected point  * , ,X x y z   

that is not in D.  

Now we already know that the function  01/ 4 X X   satisfies two 

of the three conditions – (i) and (iii) – requires of the Green‘s 

function: We want the modify it to get (ii) as well. 

We assert that the Green‘s function for a D is 
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 0 *
0 0

1 1
, .

4 4
G X X

X X X X 
  

 
 

In coordinates, 

       

     

1/2
2 2 2

0 0 0 0

1/2
2 2 2

0 0 0

1
, x

4

1
.

4

G X x x y y z z

x x y y z z









      
 

      
 

 

Notice that the two terms differ only in the  0z z  factors. Let‘s 

verify the assertion (1) by checking each of the three properties of G. 

(i) Clearly, G is finite and differentiable except at 0.X  Also, 

0.G   

 

 

 

(ii) This is the main property to check. Let ,X bdy D  so that 

0.z   From  Figure 2 we see that 
*

0 0 .X X X X    Thus 

 0, 0.G X X   

(iii) Because *

0X  is outside out domain D, the function 

 *

01/ 4 X X   has no singularity inside the domain, so that G has  

the proper singularity at 0.X  

(iv) These three properties prove that   0,G X X  is the Green‘s 

function for  this domain. Let‘s now it to solve the Dirichlet problem 
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   0 0, , ,0 , .u for z u x y h x y     

 We use formula (7.3.1). Notice that 0/ n / zlzG G       

because n  points downward (outward from the domain). 

Furthermore, 

0 0

3 3
*

00

0

3

0

1

4

1

2

z z z zG

z X XX X

z

X X





 
     

  
 




 

on 0.z   Therefore, the solution of (2) is  

         
3/2

2 2 20
0 0 0 0 0 0, , , ,

2
D

z
u x y z x x y y z h x y dx dy





     
    

Where both integrals run over  , ,   noting that 0z   in the 

integrand. 

 
 0

0 3

0

.
2

D

h Xz
u X d S

X X



   

This is the complete formula that solves the Dirichlet problem for the 

half-space. 

 

 

THE SPHERE 

The Green‘s function for the ball  D X a   of radius a can also 

be found by the reflection method. In this case, however, the 

reflection is across the sphere  ,X a  which is the boundary D (see 

Figure 3). 

Fix any nonzero point 0X  in the ball  0,0 .that is X a   the 

reflected point *

0X  is defined by two properties. It is collinear with the 
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origin 0 and the point 
0 .X  Its distance from the origin is determined 

by the formula 
* 2

0 0 .X X a  Thus 

2
* 0
0 2

0

.
a X

X
X

  

If X is any point at all, let‘s denote 
* *

0 0 .X X p and X X p     

Then the Green‘s function of the ball is  

 0 *

0

1 1
,

4 4

a
G X X

p X p 
    

if 0 0.X   To verify formula, we need only check the three conditions 

(i),(ii), and (iii). We‘ll consider the case 0 0X  separately. 

First of all, G has no singularity except at 0X X  because *

0X  lies 

outside the ball. The functions 
*1/ 1/ pp and  are harmonic in D 

except at 0X  because they are just translates of 1/ .r  Therefore, (i) 

and (iii) are true. 

To prove (ii), we show that 
*p  is proportional to p for all points X on 

the spherical surface .X a  to do this, we notice from the 

congrument triangles in Figure 4 that 

0
0 0

0

,
r a

X x X X
a r

    

Where 0 0 .r X  The left side of (7) equals 

*0 0
02

0

r ra
X x p

a r a
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Thus  

*0 .
r

p p for all X a
a

   

Therefore, the function 

*

0

1 1
,

4 4

a

p X p 
   

defined above is zero on the sphere .X a  This is condition (ii). 

This proves  formula (6). 

 We can also write (6) in the form 

 0

0 0 0 0

1 1
, .

4 4 / /
G X X

X X r X a aX r 
 

 
 

 In case 0 0,X   the formula for the Green‘s function is 

 
1 1

,0
4 4

G X
X a 

    

Let‘s now use 96) to write the formula for the solution of the Dirichlet 

problem in   a ball: 

0 , .u in X a u h on X a      

We already know from Chapter 6 that  0u  is the average of  h x  on 

the sphere,  so let‘s consider 0 0.X   To apply (7.3.1), we need to 
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calculate / nG   on .X a  (Let‘s not forget 0X  is considered to be 

fixed, and the derivatives are  with respect to X.) 

We not that 
22

0 .p X X   Differentiating, we have 

 02 2 .X X      So  0 /X X     and 

   * * *

0 / .X X     Hence differentiating (6), we  have 

*

0 0

3 *3

0

.
4 4

X X aX X
G

p r 

 
    

Remember that  
2*

0 0 0X / .a r X  If ,X a  we showed above that 

  *

0/ ,a r   substituting these expressions into the last term 

of G,  we get 

2

0
0 03

1

4

r
G X X X X

a

  
      

   

 

 on the surface, so that  

2 2

0

3
. .

4

a rG X
G

n a a 


  


 

 Thus (7.3.1) takes the form 

 
 

22

0

0 3

0

.
4

X a

a X h X
u X d S

a X X






   

This is the solution to (12). It is the three-dimensional version of the 

Poisson formula. In more classical notation, it would be written in the 

usual spherical coordinates as 

 
   

 

2 2
2 20

0 0 0 3/20 0 2 2

0 0

,
, , sin ,

4 2 cos

a a r h
u r d d

a r ar

   
    

 




 
   

 Where   denotes the angle between 0 .X and X  
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In almost the same way, we can use the method of reflection in two 

 dimensions to  recover the Poisson formula for 

2 2 2 2 2 20 , .xx yyu u in x y a u h on x y a       \ 

Beginning with the function  1/ 2 log ,r  we find (see Exercise 11) 

that  

  *0
0

1 1
, log log

2 2

r
G X X

a a
 

 

 
   

 
 

and hence that 

 
 

22

0

0 2

0

,
2 X a

a x h x
u X ds

a X X 





  

Which is exactly the same as the Poisson formula (6.3.14), which we 

found earlier  in a completely different way? 

EXERCISE: 

1. Find the one-dimensional Green‘s function for the interval 

 0, .l  The three properties defining it can be restated as follows. 

 (i)It solves   0'' 0G x for x x   (―harmonic‖) 

 (ii)
   0 0.G G l 

 

 (iii)
 G x s is continuous at  0 0

1

2
x and G x x x   at 0.x  

2. Verify directly from (3) or (4) that the solution of the half-

space problem satisfies the condition at infinity: 

  0 .u x as X    

 Assume that  ,h x y  is a continuous function that vanishes 

outside some circle. 
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3. Show directly from (3) that the boundary condition is satisfied: 

    0 0 0 0 0 0, , , 0.u x y z h x y as z   Assume  ,h x y  is 

continuous and bounded.  [Hint: Change variables 

   
2 22 2

0 0 0/s x x y y z    
 

 and use the fact that 

  
3/2

2

0
1 1.]s s ds

 

   

4. Verify directly from (3) that the solution has derivatives of all 

orders in  0 .z    Assume that  ,h x y  is a continuous function 

that canishes outside some  circle.(Hint: See Section A.3 for 

differentiation under an integral sign.) 

5. Notice that the function ,x y  is harmonic in the half-plane 

 0y   and vanishes  on the boundary line  0 .y   The 

function 0 has the same properties. Does this  mean that the 

solution is not unique? Explain. 

6. (a) Find the Green‘s function for the half-plane   , : 0 .x y y   

 (b) Use it to solve the Dirichlet problem in the half-plane with 

boundary values   .h x  

 (c) Calculate the solution with  ,0 1.u x   

7.  (a) If    , /u x y f x y  is a harmonic function, solve the 

ODE      satisfied   by f. 

 (b) Show that / 0,u r    where 
2 2r x y   as usual. 

 (c) Suppose that  ,x y  is any function in  0y   such that 

    / 0.r    Show that   ,x y   is a 

function of the quotient / .x y . 

 (d) Find the boundary values    0lim , .y u x y h x   



Notes 

 

 8.  (a) Use Exercise 7 to find the harmonic function in the 

half-plane   0y 
   

with the boundary data 

   1 0, 0 0.h x for x h x for x     

 (b) Do the same as part (a) for the boundary data   

       1 , 0 .h x for x a h x for x a     

(Hint: Translate the preceding    answer.) 

 (c) Use part (b) to solve the same problem with the boundary 

data   ,h x  where   h x is any step function. That is, 

 
  1 1 ,j j jh x c for a x a for j n      

 Where 0 1 1... n na a a a         and the 
jc  are 

constants. 

9.  Find the Green‘s function for the tilted half-space 

  , , : 0 .x y z ax by cz     (Hint: Either do it from scratch by 

reflecting across the tilted plane, or change  variables in the double 

integral (3) using a linear transformation.) 

10.  Verify the formula (11) for  ,0 ,G X  the Green‘s function with 

its second  argument at the centre of the sphere. 

11.  Find the potential of the electrostatic field due to a point 

charge licated outside a  grounded sphere. (Hint: This is just the 

Green‘s function for the exterior of the  sphere. Find it by the 

method of reflection.) 

12.  Find the Green‘s function for the half-ball 

 2 2 2 2 , 0 .D x y z a z      (Hint:  The easiest method is to 

use the solution for the whole ball and reflect it across  the plane.) 

13.  Do the same for the eighth of a ball 

 2 2 2 2 , x 0, 0, 0 .D x y z a y z        
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14.  (a) Show that if  ,x y  is harmonic , so is 

   2 2, , 2 .u x y x y xy   

 (b) Show that the transformation    2 2, | , 2x y x y xy   maps the 

first quadrant   onto the half-plane  0 .y   (Hint: Use either 

polar coordinates or complex  variables.) 

15. Consider the four-dimensional laplacian 

.xx yy zz wwu u u u u      

  Shown that its fundamental solution is 
2 ,r

where 

2 2 2 2 2.r x y z w     

 16. Solve the Neumann problem in the half-plane: 

      0 0 , 0
u

u in y h x on y
y


    


with  ,u x y bounded 

at infinity. (Hint:  Consider the problem satisfied by .
u

y






) 

 17. Solve the Neumann problem in the quarter-plane 

 0, 0 .x y    

Check your progress 

3. Explain about half space and sphere 

------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------- 

7.6 LET US SUM UP 
 

In this unit we have discussed about Green‘s first identity, Greens‘s 

second identity, Green‘s  functions and Half –space and sphere. In 

this unit the divergence theorem and vector notation will be used 

extensively. Dirichlet‘s  principle is an important mathematical 

theorem based on the physical idea of energy. It states among  all the 

functions  w X  in D  that satisfy the Dirichlet boundary condition
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 w h X onbdy D . Green‘s second identity is the higher-

dimensional version of the identity. It leads to a basic representation 

formula for harmonic functions. 

7.7 KEY WORDS 
 

1. The Green‘s identities for the laplacian lead directly to the 

maximum principle and to Dirichlet‘s  principle about minimizing the 

energy.  

2. The Green‘s function is a kind of universal solution for 

harmonic functions in a domain. 

3. In three dimensions the mean value property states that the 

average value of any harmonic function over any sphere equals its 

value at the center. 

4. Green‘s first identity and Green‘s second identity 

5. Dirichlet principal states among  all the functions  w X  in D  

that satisfy the Dirichlet boundary condition. 

 

7.8 QUESTIONS FOR REVIEW 

 

1. Discuss about Green‘s first identity 

2. Discuss about Green‘s second identity 

3. Discuss about Green‘s functions 

4. Discuss about Half-space and sphere 

 

7.9 SUGGESTED READINGS AND 
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8.Partial Differential Equations, -Walter A.Strauss 
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10. Partial Differential Equations,Erich Mieremann 
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7.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 7.3 

2. See section 7.3 

3. see section 7.6 

 

 

 

 

 

  

 

  

  

   

 

 


